Large-Scale Traffic Data Imputation with Spatiotemporal Semantic
Understanding
- URL: http://arxiv.org/abs/2301.11691v1
- Date: Fri, 27 Jan 2023 13:02:19 GMT
- Title: Large-Scale Traffic Data Imputation with Spatiotemporal Semantic
Understanding
- Authors: Kunpeng Zhang, Lan Wu, Liang Zheng, Na Xie, Zhengbing He
- Abstract summary: This study proposes Graph Transformer for Traffic Imputation (GT-TDI) model to impute large-scale traffic data with semantic understanding of a network.
The proposed model takes incomplete data, social connectivity of sensors, and semantic descriptions as input to perform tasks with the help of Graph Neural Networks (GNN) and Transformer.
The results show that proposed GT-TDI model outperforms existing methods in complex missing patterns and diverse missing rates.
- Score: 26.86356769330179
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Large-scale data missing is a challenging problem in Intelligent
Transportation Systems (ITS). Many studies have been carried out to impute
large-scale traffic data by considering their spatiotemporal correlations at a
network level. In existing traffic data imputations, however, rich semantic
information of a road network has been largely ignored when capturing
network-wide spatiotemporal correlations. This study proposes a Graph
Transformer for Traffic Data Imputation (GT-TDI) model to impute large-scale
traffic data with spatiotemporal semantic understanding of a road network.
Specifically, the proposed model introduces semantic descriptions consisting of
network-wide spatial and temporal information of traffic data to help the
GT-TDI model capture spatiotemporal correlations at a network level. The
proposed model takes incomplete data, the social connectivity of sensors, and
semantic descriptions as input to perform imputation tasks with the help of
Graph Neural Networks (GNN) and Transformer. On the PeMS freeway dataset,
extensive experiments are conducted to compare the proposed GT-TDI model with
conventional methods, tensor factorization methods, and deep learning-based
methods. The results show that the proposed GT-TDI outperforms existing methods
in complex missing patterns and diverse missing rates. The code of the GT-TDI
model will be available at https://github.com/KP-Zhang/GT-TDI.
Related papers
- Improving Traffic Flow Predictions with SGCN-LSTM: A Hybrid Model for Spatial and Temporal Dependencies [55.2480439325792]
This paper introduces the Signal-Enhanced Graph Convolutional Network Long Short Term Memory (SGCN-LSTM) model for predicting traffic speeds across road networks.
Experiments on the PEMS-BAY road network traffic dataset demonstrate the SGCN-LSTM model's effectiveness.
arXiv Detail & Related papers (2024-11-01T00:37:00Z) - Traffic Prediction considering Multiple Levels of Spatial-temporal Information: A Multi-scale Graph Wavelet-based Approach [3.343804744266258]
This study proposes a graph wavelet temporal convolution network (MSGWTCN) to predict the traffic states in complex transportation networks.
Two real-world datasets are used to investigate the model performance, including a highway network in Seattle and a dense road network of Manhattan in New York City.
arXiv Detail & Related papers (2024-06-18T20:05:47Z) - Spatiotemporal Implicit Neural Representation as a Generalized Traffic Data Learner [46.866240648471894]
Spatiotemporal Traffic Data (STTD) measures the complex dynamical behaviors of the multiscale transportation system.
We present a novel paradigm to address the STTD learning problem by parameterizing STTD as an implicit neural representation.
We validate its effectiveness through extensive experiments in real-world scenarios, showcasing applications from corridor to network scales.
arXiv Detail & Related papers (2024-05-06T06:23:06Z) - Truncated tensor Schatten p-norm based approach for spatiotemporal
traffic data imputation with complicated missing patterns [77.34726150561087]
We introduce four complicated missing patterns, including missing and three fiber-like missing cases according to the mode-drivenn fibers.
Despite nonity of the objective function in our model, we derive the optimal solutions by integrating alternating data-mputation method of multipliers.
arXiv Detail & Related papers (2022-05-19T08:37:56Z) - Learning spatiotemporal features from incomplete data for traffic flow
prediction using hybrid deep neural networks [0.28675177318965034]
This study focuses on hybrid deep neural networks to predict traffic flow in the California Freeway Performance Measurement System (PeMS) with missing values.
Various architecture configurations with series and parallel connections are considered based on RNNs and CNNs.
A comprehensive analysis performed on two different datasets from PeMS indicates that the proposed series-parallel hybrid network with the mean imputation technique achieves the lowest error in predicting the traffic flow.
arXiv Detail & Related papers (2022-04-21T15:57:08Z) - Spatio-temporal Modeling for Large-scale Vehicular Networks Using Graph
Convolutional Networks [110.80088437391379]
A graph-based framework called SMART is proposed to model and keep track of the statistics of vehicle-to-temporal (V2I) communication latency across a large geographical area.
We develop a graph reconstruction-based approach using a graph convolutional network integrated with a deep Q-networks algorithm.
Our results show that the proposed method can significantly improve both the accuracy and efficiency for modeling and the latency performance of large vehicular networks.
arXiv Detail & Related papers (2021-03-13T06:56:29Z) - Multi-intersection Traffic Optimisation: A Benchmark Dataset and a
Strong Baseline [85.9210953301628]
Control of traffic signals is fundamental and critical to alleviate traffic congestion in urban areas.
Because of the high complexity of modelling the problem, experimental settings of current works are often inconsistent.
We propose a novel and strong baseline model based on deep reinforcement learning with the encoder-decoder structure.
arXiv Detail & Related papers (2021-01-24T03:55:39Z) - Deep convolutional generative adversarial networks for traffic data
imputation encoding time series as images [7.053891669775769]
We have developed a generative adversarial network (GAN) based traffic sensor data imputation framework (TGAN)
In this study, we have developed a novel time-dependent encoding method called the Gramian Angular Summation Field (GASF)
This study shows that the proposed model can significantly improve the traffic data imputation accuracy in terms of Mean Absolute Error (MAE) and Root Mean Squared Error (RMSE) compared to state-of-the-art models on the benchmark dataset.
arXiv Detail & Related papers (2020-05-05T19:14:02Z) - Constructing Geographic and Long-term Temporal Graph for Traffic
Forecasting [88.5550074808201]
We propose Geographic and Long term Temporal Graph Convolutional Recurrent Neural Network (GLT-GCRNN) for traffic forecasting.
In this work, we propose a novel framework for traffic forecasting that learns the rich interactions between roads sharing similar geographic or longterm temporal patterns.
arXiv Detail & Related papers (2020-04-23T03:50:46Z) - A Nonconvex Low-Rank Tensor Completion Model for Spatiotemporal Traffic
Data Imputation [13.48205738743634]
Missing data imputation is common in intemporal traffic data collected from various sensing systems.
We present an efficient algorithm to obtain the optimal solution for each variable.
The proposed model also outperforms other baseline models in extreme missing scenarios.
arXiv Detail & Related papers (2020-03-23T13:27:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.