Particle-Number Threshold for Non-Abelian Geometric Phases
- URL: http://arxiv.org/abs/2301.11999v2
- Date: Fri, 23 Jun 2023 15:08:25 GMT
- Title: Particle-Number Threshold for Non-Abelian Geometric Phases
- Authors: Julien Pinske, Vincent Burgtorf, and Stefan Scheel
- Abstract summary: We introduce a particle-number threshold (PNT) that assesses a system's capabilities to perform purely geometric manipulations of quantum states.
This threshold gives the minimal number of particles necessary to fully exploit a system's potential to generate non-Abelian geometric phases.
We benchmark our findings on bosonic systems relevant to linear and nonlinear quantum optics.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: When a quantum state traverses a path, while being under the influence of a
gauge potential, it acquires a geometric phase that is often more than just a
scalar quantity. The variety of unitary transformations that can be realised by
this form of parallel transport depends crucially on the number of particles
involved in the evolution. Here, we introduce a particle-number threshold (PNT)
that assesses a system's capabilities to perform purely geometric manipulations
of quantum states. This threshold gives the minimal number of particles
necessary to fully exploit a system's potential to generate non-Abelian
geometric phases. Therefore, the PNT might be useful for evaluating the
resource demands of a holonomic quantum computer. We benchmark our findings on
bosonic systems relevant to linear and nonlinear quantum optics.
Related papers
- Non-adiabatic holonomic quantum operations in continuous variable systems [2.4060220973816144]
Quantum operations by utilizing the underlying geometric phases produced in physical systems are favoured due to its potential robustness.
Here we propose a feasible scheme to realize non-adiabatic holonomic quantum logic operations in continuous variable systems with cat codes.
arXiv Detail & Related papers (2024-02-04T07:06:23Z) - Critical quantum geometric tensors of parametrically-driven nonlinear
resonators [5.743814444071535]
Parametrically driven nonlinear resonators represent building block for realizing fault-tolerant quantum computation.
Critical phenomena can occur without interaction with any other quantum system.
This work reveals that the quantum metric and Berry curvature display diverging behaviors across the quantum phase transition.
arXiv Detail & Related papers (2023-12-22T03:31:58Z) - Generalized quantum geometric tensor for excited states using the path
integral approach [0.0]
The quantum geometric tensor encodes the parameter space geometry of a physical system.
We first provide a formulation of the quantum geometrical tensor in the path integral formalism that can handle both the ground and excited states.
We then generalize the quantum geometric tensor to incorporate variations of the system parameters and the phase-space coordinates.
arXiv Detail & Related papers (2023-05-19T08:50:46Z) - Universality of critical dynamics with finite entanglement [68.8204255655161]
We study how low-energy dynamics of quantum systems near criticality are modified by finite entanglement.
Our result establishes the precise role played by entanglement in time-dependent critical phenomena.
arXiv Detail & Related papers (2023-01-23T19:23:54Z) - Geometric phases along quantum trajectories [58.720142291102135]
We study the distribution function of geometric phases in monitored quantum systems.
For the single trajectory exhibiting no quantum jumps, a topological transition in the phase acquired after a cycle.
For the same parameters, the density matrix does not show any interference.
arXiv Detail & Related papers (2023-01-10T22:05:18Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
We discuss the dimensionless combinations of basic parameters of large, partially quantum coherent systems.
Based on analytical and numerical calculations, we suggest one such number for a system of qubits undergoing adiabatic evolution.
arXiv Detail & Related papers (2021-08-30T23:50:05Z) - Geometrical Rabi oscillations and Landau-Zener transitions in
non-Abelian systems [0.0]
We propose universal protocols to determine quantum geometric properties in non-Abelian systems.
Our schemes suggest a way to prepare eigenstates of the quantum metric.
arXiv Detail & Related papers (2021-05-06T14:09:52Z) - Observing a Topological Transition in Weak-Measurement-Induced Geometric
Phases [55.41644538483948]
Weak measurements in particular, through their back-action on the system, may enable various levels of coherent control.
We measure the geometric phases induced by sequences of weak measurements and demonstrate a topological transition in the geometric phase controlled by measurement strength.
Our results open new horizons for measurement-enabled quantum control of many-body topological states.
arXiv Detail & Related papers (2021-02-10T19:00:00Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
dissertation concerns the quantum dynamics of strongly-correlated quantum systems in out-of-equilibrium states.
Our main results can be summarized in three parts: Signature of Critical Dynamics, Driven Dicke Model as a Test-bed of Ultra-Strong Coupling, and Beyond the Kibble-Zurek Mechanism.
arXiv Detail & Related papers (2020-07-23T19:05:56Z) - Probing chiral edge dynamics and bulk topology of a synthetic Hall
system [52.77024349608834]
Quantum Hall systems are characterized by the quantization of the Hall conductance -- a bulk property rooted in the topological structure of the underlying quantum states.
Here, we realize a quantum Hall system using ultracold dysprosium atoms, in a two-dimensional geometry formed by one spatial dimension.
We demonstrate that the large number of magnetic sublevels leads to distinct bulk and edge behaviors.
arXiv Detail & Related papers (2020-01-06T16:59:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.