Unbiased and Efficient Self-Supervised Incremental Contrastive Learning
- URL: http://arxiv.org/abs/2301.12104v1
- Date: Sat, 28 Jan 2023 06:11:31 GMT
- Title: Unbiased and Efficient Self-Supervised Incremental Contrastive Learning
- Authors: Cheng Ji, Jianxin Li, Hao Peng, Jia Wu, Xingcheng Fu, Qingyun Sun,
Phillip S. Yu
- Abstract summary: We propose a self-supervised Incremental Contrastive Learning (ICL) framework consisting of a novel Incremental InfoNCE (NCE-II) loss function.
ICL achieves up to 16.7x training speedup and 16.8x faster convergence with competitive results.
- Score: 31.763904668737304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Contrastive Learning (CL) has been proved to be a powerful self-supervised
approach for a wide range of domains, including computer vision and graph
representation learning. However, the incremental learning issue of CL has
rarely been studied, which brings the limitation in applying it to real-world
applications. Contrastive learning identifies the samples with the negative
ones from the noise distribution that changes in the incremental scenarios.
Therefore, only fitting the change of data without noise distribution causes
bias, and directly retraining results in low efficiency. To bridge this
research gap, we propose a self-supervised Incremental Contrastive Learning
(ICL) framework consisting of (i) a novel Incremental InfoNCE (NCE-II) loss
function by estimating the change of noise distribution for old data to
guarantee no bias with respect to the retraining, (ii) a meta-optimization with
deep reinforced Learning Rate Learning (LRL) mechanism which can adaptively
learn the learning rate according to the status of the training processes and
achieve fast convergence which is critical for incremental learning.
Theoretically, the proposed ICL is equivalent to retraining, which is based on
solid mathematical derivation. In practice, extensive experiments in different
domains demonstrate that, without retraining a new model, ICL achieves up to
16.7x training speedup and 16.8x faster convergence with competitive results.
Related papers
- Dynamic Learning Rate for Deep Reinforcement Learning: A Bandit Approach [0.9549646359252346]
We propose dynamic Learning Rate for deep Reinforcement Learning (LRRL)
LRRL is a meta-learning approach that selects the learning rate based on the agent's performance during training.
Our empirical results demonstrate that LRRL can substantially improve the performance of deep RL algorithms.
arXiv Detail & Related papers (2024-10-16T14:15:28Z) - Temporal-Difference Variational Continual Learning [89.32940051152782]
A crucial capability of Machine Learning models in real-world applications is the ability to continuously learn new tasks.
In Continual Learning settings, models often struggle to balance learning new tasks with retaining previous knowledge.
We propose new learning objectives that integrate the regularization effects of multiple previous posterior estimations.
arXiv Detail & Related papers (2024-10-10T10:58:41Z) - Normalization and effective learning rates in reinforcement learning [52.59508428613934]
Normalization layers have recently experienced a renaissance in the deep reinforcement learning and continual learning literature.
We show that normalization brings with it a subtle but important side effect: an equivalence between growth in the norm of the network parameters and decay in the effective learning rate.
We propose to make the learning rate schedule explicit with a simple re- parameterization which we call Normalize-and-Project.
arXiv Detail & Related papers (2024-07-01T20:58:01Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
arXiv Detail & Related papers (2024-05-29T15:44:51Z) - Rethinking Classifier Re-Training in Long-Tailed Recognition: A Simple
Logits Retargeting Approach [102.0769560460338]
We develop a simple logits approach (LORT) without the requirement of prior knowledge of the number of samples per class.
Our method achieves state-of-the-art performance on various imbalanced datasets, including CIFAR100-LT, ImageNet-LT, and iNaturalist 2018.
arXiv Detail & Related papers (2024-03-01T03:27:08Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Directly Attention Loss Adjusted Prioritized Experience Replay [0.07366405857677226]
Prioritized Replay Experience (PER) enables the model to learn more about relatively important samples by artificially changing their accessed frequencies.
DALAP is proposed, which can directly quantify the changed extent of the shifted distribution through Parallel Self-Attention network.
arXiv Detail & Related papers (2023-11-24T10:14:05Z) - ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations [30.745749133759304]
We develop a theoretical framework to analyze the transferability of self-supervised contrastive learning.
We show that contrastive learning fails to learn domain-invariant features, which limits its transferability.
Based on these theoretical insights, we propose a novel method called Augmentation-robust Contrastive Learning (ArCL)
arXiv Detail & Related papers (2023-03-02T09:26:20Z) - Learning with Multiclass AUC: Theory and Algorithms [141.63211412386283]
Area under the ROC curve (AUC) is a well-known ranking metric for problems such as imbalanced learning and recommender systems.
In this paper, we start an early trial to consider the problem of learning multiclass scoring functions via optimizing multiclass AUC metrics.
arXiv Detail & Related papers (2021-07-28T05:18:10Z) - Semi-supervised Contrastive Learning with Similarity Co-calibration [72.38187308270135]
We propose a novel training strategy, termed as Semi-supervised Contrastive Learning (SsCL)
SsCL combines the well-known contrastive loss in self-supervised learning with the cross entropy loss in semi-supervised learning.
We show that SsCL produces more discriminative representation and is beneficial to few shot learning.
arXiv Detail & Related papers (2021-05-16T09:13:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.