ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations
- URL: http://arxiv.org/abs/2303.01092v2
- Date: Tue, 12 Dec 2023 09:37:12 GMT
- Title: ArCL: Enhancing Contrastive Learning with Augmentation-Robust
Representations
- Authors: Xuyang Zhao and Tianqi Du and Yisen Wang and Jun Yao and Weiran Huang
- Abstract summary: We develop a theoretical framework to analyze the transferability of self-supervised contrastive learning.
We show that contrastive learning fails to learn domain-invariant features, which limits its transferability.
Based on these theoretical insights, we propose a novel method called Augmentation-robust Contrastive Learning (ArCL)
- Score: 30.745749133759304
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Self-Supervised Learning (SSL) is a paradigm that leverages unlabeled data
for model training. Empirical studies show that SSL can achieve promising
performance in distribution shift scenarios, where the downstream and training
distributions differ. However, the theoretical understanding of its
transferability remains limited. In this paper, we develop a theoretical
framework to analyze the transferability of self-supervised contrastive
learning, by investigating the impact of data augmentation on it. Our results
reveal that the downstream performance of contrastive learning depends largely
on the choice of data augmentation. Moreover, we show that contrastive learning
fails to learn domain-invariant features, which limits its transferability.
Based on these theoretical insights, we propose a novel method called
Augmentation-robust Contrastive Learning (ArCL), which guarantees to learn
domain-invariant features and can be easily integrated with existing
contrastive learning algorithms. We conduct experiments on several datasets and
show that ArCL significantly improves the transferability of contrastive
learning.
Related papers
- Understanding the Role of Equivariance in Self-supervised Learning [51.56331245499712]
equivariant self-supervised learning (E-SSL) learns features to be augmentation-aware.
We identify a critical explaining-away effect in E-SSL that creates a synergy between the equivariant and classification tasks.
We reveal several principles for practical designs of E-SSL.
arXiv Detail & Related papers (2024-11-10T16:09:47Z) - Contrastive Learning Via Equivariant Representation [19.112460889771423]
We propose CLeVER, a novel equivariant contrastive learning framework compatible with augmentation strategies of arbitrary complexity.
Experimental results demonstrate that CLeVER effectively extracts and incorporates equivariant information from practical natural images.
arXiv Detail & Related papers (2024-06-01T01:53:51Z) - Contrastive-Adversarial and Diffusion: Exploring pre-training and fine-tuning strategies for sulcal identification [3.0398616939692777]
Techniques like adversarial learning, contrastive learning, diffusion denoising learning, and ordinary reconstruction learning have become standard.
The study aims to elucidate the advantages of pre-training techniques and fine-tuning strategies to enhance the learning process of neural networks.
arXiv Detail & Related papers (2024-05-29T15:44:51Z) - The Common Stability Mechanism behind most Self-Supervised Learning
Approaches [64.40701218561921]
We provide a framework to explain the stability mechanism of different self-supervised learning techniques.
We discuss the working mechanism of contrastive techniques like SimCLR, non-contrastive techniques like BYOL, SWAV, SimSiam, Barlow Twins, and DINO.
We formulate different hypotheses and test them using the Imagenet100 dataset.
arXiv Detail & Related papers (2024-02-22T20:36:24Z) - Relaxed Contrastive Learning for Federated Learning [48.96253206661268]
We propose a novel contrastive learning framework to address the challenges of data heterogeneity in federated learning.
Our framework outperforms all existing federated learning approaches by huge margins on the standard benchmarks.
arXiv Detail & Related papers (2024-01-10T04:55:24Z) - Unbiased and Efficient Self-Supervised Incremental Contrastive Learning [31.763904668737304]
We propose a self-supervised Incremental Contrastive Learning (ICL) framework consisting of a novel Incremental InfoNCE (NCE-II) loss function.
ICL achieves up to 16.7x training speedup and 16.8x faster convergence with competitive results.
arXiv Detail & Related papers (2023-01-28T06:11:31Z) - Latent Variable Representation for Reinforcement Learning [131.03944557979725]
It remains unclear theoretically and empirically how latent variable models may facilitate learning, planning, and exploration to improve the sample efficiency of model-based reinforcement learning.
We provide a representation view of the latent variable models for state-action value functions, which allows both tractable variational learning algorithm and effective implementation of the optimism/pessimism principle.
In particular, we propose a computationally efficient planning algorithm with UCB exploration by incorporating kernel embeddings of latent variable models.
arXiv Detail & Related papers (2022-12-17T00:26:31Z) - Mitigating Forgetting in Online Continual Learning via Contrasting
Semantically Distinct Augmentations [22.289830907729705]
Online continual learning (OCL) aims to enable model learning from a non-stationary data stream to continuously acquire new knowledge as well as retain the learnt one.
Main challenge comes from the "catastrophic forgetting" issue -- the inability to well remember the learnt knowledge while learning the new ones.
arXiv Detail & Related papers (2022-11-10T05:29:43Z) - Weak Augmentation Guided Relational Self-Supervised Learning [80.0680103295137]
We introduce a novel relational self-supervised learning (ReSSL) framework that learns representations by modeling the relationship between different instances.
Our proposed method employs sharpened distribution of pairwise similarities among different instances as textitrelation metric.
Experimental results show that our proposed ReSSL substantially outperforms the state-of-the-art methods across different network architectures.
arXiv Detail & Related papers (2022-03-16T16:14:19Z) - ReSSL: Relational Self-Supervised Learning with Weak Augmentation [68.47096022526927]
Self-supervised learning has achieved great success in learning visual representations without data annotations.
We introduce a novel relational SSL paradigm that learns representations by modeling the relationship between different instances.
Our proposed ReSSL significantly outperforms the previous state-of-the-art algorithms in terms of both performance and training efficiency.
arXiv Detail & Related papers (2021-07-20T06:53:07Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.