Neural Gas Network Image Features and Segmentation for Brain Tumor
Detection Using Magnetic Resonance Imaging Data
- URL: http://arxiv.org/abs/2301.12176v1
- Date: Sat, 28 Jan 2023 12:16:37 GMT
- Title: Neural Gas Network Image Features and Segmentation for Brain Tumor
Detection Using Magnetic Resonance Imaging Data
- Authors: S. Muhammad Hossein Mousavi
- Abstract summary: This research uses the metaheuristic Firefly Algorithm (FA) for image contrast enhancement as pre-processing.
Also, tumor classification is conducted by Support Vector Machine (SVM) classification algorithms and compared with a deep learning technique.
A classification accuracy of 95.14 % and segmentation accuracy of 0.977 is achieved by the proposed method.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate detection of brain tumors could save lots of lives and increasing
the accuracy of this binary classification even as much as a few percent has
high importance. Neural Gas Networks (NGN) is a fast, unsupervised algorithm
that could be used in data clustering, image pattern recognition, and image
segmentation. In this research, we used the metaheuristic Firefly Algorithm
(FA) for image contrast enhancement as pre-processing and NGN weights for
feature extraction and segmentation of Magnetic Resonance Imaging (MRI) data on
two brain tumor datasets from the Kaggle platform. Also, tumor classification
is conducted by Support Vector Machine (SVM) classification algorithms and
compared with a deep learning technique plus other features in train and test
phases. Additionally, NGN tumor segmentation is evaluated by famous performance
metrics such as Accuracy, F-measure, Jaccard, and more versus ground truth data
and compared with traditional segmentation techniques. The proposed method is
fast and precise in both tasks of tumor classification and segmentation
compared with other methods. A classification accuracy of 95.14 % and
segmentation accuracy of 0.977 is achieved by the proposed method.
Related papers
- Lumbar Spine Tumor Segmentation and Localization in T2 MRI Images Using AI [2.9746083684997418]
This study introduces a novel data augmentation technique, aimed at automating spine tumor segmentation and localization through AI approaches.
A Convolutional Neural Network (CNN) architecture is employed for tumor classification. 3D vertebral segmentation and labeling techniques are used to help pinpoint the exact location of the tumors in the lumbar spine.
Results indicate a remarkable performance, with 99% accuracy for tumor segmentation, 98% accuracy for tumor classification, and 99% accuracy for tumor localization achieved with the proposed approach.
arXiv Detail & Related papers (2024-05-07T05:55:50Z) - Breast Ultrasound Tumor Classification Using a Hybrid Multitask
CNN-Transformer Network [63.845552349914186]
Capturing global contextual information plays a critical role in breast ultrasound (BUS) image classification.
Vision Transformers have an improved capability of capturing global contextual information but may distort the local image patterns due to the tokenization operations.
In this study, we proposed a hybrid multitask deep neural network called Hybrid-MT-ESTAN, designed to perform BUS tumor classification and segmentation.
arXiv Detail & Related papers (2023-08-04T01:19:32Z) - Brain tumor multi classification and segmentation in MRI images using
deep learning [3.1248717814228923]
The classification model is based on the EfficientNetB1 architecture and is trained to classify images into four classes: meningioma, glioma, pituitary adenoma, and no tumor.
The segmentation model is based on the U-Net architecture and is trained to accurately segment the tumor from the MRI images.
arXiv Detail & Related papers (2023-04-20T01:32:55Z) - An Improved Deep Convolutional Neural Network by Using Hybrid
Optimization Algorithms to Detect and Classify Brain Tumor Using Augmented
MRI Images [0.9990687944474739]
In this paper, an improvement in deep convolutional learning is ensured by adopting enhanced optimization algorithms.
Experimental studies are conducted to validate the performance of the suggested method on a total number of 2073 augmented MRI images.
The performance comparison shows that the DCNN-G-HHO is much more successful than existing methods, especially on a scoring accuracy of 97%.
arXiv Detail & Related papers (2022-06-08T14:29:06Z) - Preservation of High Frequency Content for Deep Learning-Based Medical
Image Classification [74.84221280249876]
An efficient analysis of large amounts of chest radiographs can aid physicians and radiologists.
We propose a novel Discrete Wavelet Transform (DWT)-based method for the efficient identification and encoding of visual information.
arXiv Detail & Related papers (2022-05-08T15:29:54Z) - EMT-NET: Efficient multitask network for computer-aided diagnosis of
breast cancer [58.720142291102135]
We propose an efficient and light-weighted learning architecture to classify and segment breast tumors simultaneously.
We incorporate a segmentation task into a tumor classification network, which makes the backbone network learn representations focused on tumor regions.
The accuracy, sensitivity, and specificity of tumor classification is 88.6%, 94.1%, and 85.3%, respectively.
arXiv Detail & Related papers (2022-01-13T05:24:40Z) - Cross-Modality Deep Feature Learning for Brain Tumor Segmentation [158.8192041981564]
This paper proposes a novel cross-modality deep feature learning framework to segment brain tumors from the multi-modality MRI data.
The core idea is to mine rich patterns across the multi-modality data to make up for the insufficient data scale.
Comprehensive experiments are conducted on the BraTS benchmarks, which show that the proposed cross-modality deep feature learning framework can effectively improve the brain tumor segmentation performance.
arXiv Detail & Related papers (2022-01-07T07:46:01Z) - Brain Tumor Detection and Classification based on Hybrid Ensemble
Classifier [0.6091702876917281]
We propose a hybrid ensemble method using Random Forest (RF), K-Nearest Neighbour, and Decision Tree (DT) (KNN-RF-DT) based on Majority Voting Method.
It aims to calculate the area of the tumor region and classify brain tumors as benign and malignant.
Our proposed method is tested upon dataset of 2556 images, which are used in 85:15 for training and testing respectively and gives good accuracy of 97.305%.
arXiv Detail & Related papers (2021-01-01T11:52:29Z) - Improved Slice-wise Tumour Detection in Brain MRIs by Computing
Dissimilarities between Latent Representations [68.8204255655161]
Anomaly detection for Magnetic Resonance Images (MRIs) can be solved with unsupervised methods.
We have proposed a slice-wise semi-supervised method for tumour detection based on the computation of a dissimilarity function in the latent space of a Variational AutoEncoder.
We show that by training the models on higher resolution images and by improving the quality of the reconstructions, we obtain results which are comparable with different baselines.
arXiv Detail & Related papers (2020-07-24T14:02:09Z) - Y-Net for Chest X-Ray Preprocessing: Simultaneous Classification of
Geometry and Segmentation of Annotations [70.0118756144807]
This work introduces a general pre-processing step for chest x-ray input into machine learning algorithms.
A modified Y-Net architecture based on the VGG11 encoder is used to simultaneously learn geometric orientation and segmentation of radiographs.
Results were evaluated by expert clinicians, with acceptable geometry in 95.8% and annotation mask in 96.2%, compared to 27.0% and 34.9% respectively in control images.
arXiv Detail & Related papers (2020-05-08T02:16:17Z) - Region of Interest Identification for Brain Tumors in Magnetic Resonance
Images [8.75217589103206]
We propose a fast, automated method, with light computational complexity, to find the smallest bounding box around the tumor region.
This region-of-interest can be used as a preprocessing step in training networks for subregion tumor segmentation.
The proposed method is evaluated on the BraTS 2015 dataset, and the average gained DICE score is 0.73, which is an acceptable result for this application.
arXiv Detail & Related papers (2020-02-26T14:10:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.