論文の概要: Long-Term Modeling of Financial Machine Learning for Active Portfolio
Management
- arxiv url: http://arxiv.org/abs/2301.12346v1
- Date: Sun, 29 Jan 2023 04:01:34 GMT
- ステータス: 処理完了
- システム内更新日: 2023-01-31 17:44:55.089878
- Title: Long-Term Modeling of Financial Machine Learning for Active Portfolio
Management
- Title(参考訳): アクティブポートフォリオ管理のための金融機械学習の長期モデリング
- Authors: Kazuki Amagai and Tomoya Suzuki
- Abstract要約: 機械学習を用いて管理モデルを構築すると、長期的な時間スケールの増加に伴い、学習データの数は減少する。
本研究では,対象タスクの時間スケールだけでなく,短期時間スケールの学習データも併用することにより,データ拡張を適用した。
この効果は株式市場だけでなくFX市場でも確認でき、様々な金融市場で汎用的な管理モデルを構築することができる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the practical business of asset management by investment trusts and the
like, the general practice is to manage over the medium to long term owing to
the burden of operations and increase in transaction costs with the increase in
turnover ratio. However, when machine learning is used to construct a
management model, the number of learning data decreases with the increase in
the long-term time scale; this causes a decline in the learning precision.
Accordingly, in this study, data augmentation was applied by the combined use
of not only the time scales of the target tasks but also the learning data of
shorter term time scales, demonstrating that degradation of the generalization
performance can be inhibited even if the target tasks of machine learning have
long-term time scales. Moreover, as an illustration of how this data
augmentation can be applied, we conducted portfolio management in which machine
learning of a multifactor model was done by an autoencoder and mispricing was
used from the estimated theoretical values. The effectiveness could be
confirmed in not only the stock market but also the FX market, and a
general-purpose management model could be constructed in various financial
markets.
- Abstract(参考訳): 投資信託等による資産管理の実務においては、運用の負担や取引コストの増加により、中間から長期にわたって運用を行うことが一般的である。
しかし,機械学習を用いて管理モデルを構築すると,長期スケールの増加に伴って学習データの数が減少し,学習精度が低下する。
そこで本研究では,対象タスクの時間スケールだけでなく,短期の時間スケールの学習データも併用することにより,機械学習の目標タスクが長期の時間スケールであっても,一般化性能の劣化を抑制できることを実証した。
さらに,このデータ拡張の応用例として,マルチファクタモデルの機械学習をオートエンコーダで行い,推定理論値から誤算を行ったポートフォリオ管理を行った。
この効果は株式市場だけでなくFX市場でも確認でき、様々な金融市場で汎用的な管理モデルを構築することができる。
関連論文リスト
- Stock Price Prediction and Traditional Models: An Approach to Achieve Short-, Medium- and Long-Term Goals [0.0]
在庫価格予測のためのディープラーニングモデルと従来の統計手法の比較分析は、ナイジェリア証券取引所のデータを用いている。
深層学習モデル、特にLSTMは、データの複雑な非線形パターンをキャプチャすることで従来の手法より優れている。
この結果は、金融予測と投資戦略を改善するための深層学習の可能性を強調している。
論文 参考訳(メタデータ) (2024-09-29T11:20:20Z) - MCI-GRU: Stock Prediction Model Based on Multi-Head Cross-Attention and Improved GRU [15.232546605091818]
本稿では,多頭部クロスアテンション機構と改良型GRUに基づくストック予測モデルMCI-GRUを提案する。
4つの主要株式市場での実験では、提案手法は複数の指標でSOTA技術を上回っている。
論文 参考訳(メタデータ) (2024-09-25T14:37:49Z) - DiffSTOCK: Probabilistic relational Stock Market Predictions using Diffusion Models [1.9662978733004601]
我々は、歴史的金融指標とストック間関係を前提とした、より良い市場予測を提供するためのアーキテクチャを開発する。
また,Masked Transformer (RTM) を用いて,ストック間関係と歴史的ストックの特徴を生かした新しい決定論的アーキテクチャ MTCHS を提供する。
論文 参考訳(メタデータ) (2024-03-21T01:20:32Z) - Can ChatGPT Forecast Stock Price Movements? Return Predictability and Large Language Models [51.3422222472898]
ニュース見出しを用いて,ChatGPTのような大規模言語モデル(LLM)の株価変動を予測する能力について述べる。
我々は,情報容量制約,過小反応,制限対アビタージュ,LLMを組み込んだ理論モデルを構築した。
論文 参考訳(メタデータ) (2023-04-15T19:22:37Z) - DeepVol: Volatility Forecasting from High-Frequency Data with Dilated Causal Convolutions [53.37679435230207]
本稿では,Dilated Causal Convolutionsに基づくDeepVolモデルを提案する。
実験結果から,提案手法は高頻度データからグローバルな特徴を効果的に学習できることが示唆された。
論文 参考訳(メタデータ) (2022-09-23T16:13:47Z) - Augmented Bilinear Network for Incremental Multi-Stock Time-Series
Classification [83.23129279407271]
本稿では,有価証券のセットで事前学習したニューラルネットワークで利用可能な知識を効率的に保持する手法を提案する。
本手法では,既存の接続を固定することにより,事前学習したニューラルネットワークに符号化された事前知識を維持する。
この知識は、新しいデータを用いて最適化された一連の拡張接続によって、新しい証券に対して調整される。
論文 参考訳(メタデータ) (2022-07-23T18:54:10Z) - Bayesian Bilinear Neural Network for Predicting the Mid-price Dynamics
in Limit-Order Book Markets [84.90242084523565]
伝統的な時系列計量法は、価格力学を駆動する多層相互作用の真の複雑さを捉えることができないことが多い。
最先端の2次最適化アルゴリズムを採用することで、時間的注意を払ってベイジアン双線形ニューラルネットワークを訓練する。
予測分布を用いて推定パラメータとモデル予測に関連する誤差や不確実性を解析することにより、ベイズモデルと従来のML代替品を徹底的に比較する。
論文 参考訳(メタデータ) (2022-03-07T18:59:54Z) - Automated Machine Learning Techniques for Data Streams [91.3755431537592]
本稿では、最先端のオープンソースAutoMLツールを調査し、ストリームから収集したデータに適用し、時間とともにパフォーマンスがどのように変化するかを測定する。
この結果から,既製のAutoMLツールで十分な結果が得られることが示されたが,概念ドリフトや検出,適応といった手法が適用されれば,予測精度を時間とともに維持することが可能になる。
論文 参考訳(メタデータ) (2021-06-14T11:42:46Z) - Deep Stock Predictions [58.720142291102135]
本稿では,Long Short Term Memory (LSTM) ニューラルネットワークを用いてポートフォリオ最適化を行うトレーディング戦略の設計について考察する。
次に、LSTMのトレーニングに使用する損失関数をカスタマイズし、利益を上げる。
カスタマイズされた損失関数を持つLSTMモデルは、ARIMAのような回帰ベースライン上でのトレーニングボットの性能を向上させる。
論文 参考訳(メタデータ) (2020-06-08T23:37:47Z) - Machine Learning Algorithms for Financial Asset Price Forecasting [0.0]
本研究は、高性能コンピューティングインフラ上での機械学習アルゴリズムの最先端実装を直接比較し、対比する。
実装された機械学習モデル – ストックユニバース全体の時系列データに基づいてトレーニングされた – は、OOS(Out-of-sample)テストデータにおいて、CAPMを大幅に上回っている。
論文 参考訳(メタデータ) (2020-03-31T18:14:18Z) - Predictive intraday correlations in stable and volatile market
environments: Evidence from deep learning [2.741266294612776]
我々は、S&P500株間のラタグ相関を学習・活用するためにディープラーニングを適用し、安定市場と不安定市場のモデル行動を比較する。
以上の結果から,アキュラシーは有意でありながら,予測地平線が短いほど低下することが示唆された。
ポートフォリオマネージャのための調査ツールとしての現代金融理論と作業の適用性について論じる。
論文 参考訳(メタデータ) (2020-02-24T17:19:54Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。