Behavioural Reports of Multi-Stage Malware
- URL: http://arxiv.org/abs/2301.12800v1
- Date: Mon, 30 Jan 2023 11:51:02 GMT
- Title: Behavioural Reports of Multi-Stage Malware
- Authors: Marcus Carpenter, Chunbo Luo
- Abstract summary: This dataset provides API call sequences for thousands of malware samples executed in Windows 10 virtual machines.
A tutorial on how to create and expand this dataset is provided along with a benchmark demonstrating how to use this dataset to classify malware.
- Score: 3.64414368529873
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The extensive damage caused by malware requires anti-malware systems to be
constantly improved to prevent new threats. The current trend in malware
detection is to employ machine learning models to aid in the classification
process. We propose a new dataset with the objective of improving current
anti-malware systems. The focus of this dataset is to improve host based
intrusion detection systems by providing API call sequences for thousands of
malware samples executed in Windows 10 virtual machines. A tutorial on how to
create and expand this dataset is provided along with a benchmark demonstrating
how to use this dataset to classify malware. The data contains long sequences
of API calls for each sample, and in order to create models that can be
deployed in resource constrained devices, three feature selection methods were
tested. The principal innovation, however, lies in the multi-label
classification system in which one sequence of APIs can be tagged with multiple
labels describing its malicious behaviours.
Related papers
- MASKDROID: Robust Android Malware Detection with Masked Graph Representations [56.09270390096083]
We propose MASKDROID, a powerful detector with a strong discriminative ability to identify malware.
We introduce a masking mechanism into the Graph Neural Network based framework, forcing MASKDROID to recover the whole input graph.
This strategy enables the model to understand the malicious semantics and learn more stable representations, enhancing its robustness against adversarial attacks.
arXiv Detail & Related papers (2024-09-29T07:22:47Z) - Small Effect Sizes in Malware Detection? Make Harder Train/Test Splits! [51.668411293817464]
Industry practitioners care about small improvements in malware detection accuracy because their models are deployed to hundreds of millions of machines.
Academic research is often restrained to public datasets on the order of ten thousand samples.
We devise an approach to generate a benchmark of difficulty from a pool of available samples.
arXiv Detail & Related papers (2023-12-25T21:25:55Z) - DRSM: De-Randomized Smoothing on Malware Classifier Providing Certified
Robustness [58.23214712926585]
We develop a certified defense, DRSM (De-Randomized Smoothed MalConv), by redesigning the de-randomized smoothing technique for the domain of malware detection.
Specifically, we propose a window ablation scheme to provably limit the impact of adversarial bytes while maximally preserving local structures of the executables.
We are the first to offer certified robustness in the realm of static detection of malware executables.
arXiv Detail & Related papers (2023-03-20T17:25:22Z) - Unlearnable Clusters: Towards Label-agnostic Unlearnable Examples [128.25509832644025]
There is a growing interest in developing unlearnable examples (UEs) against visual privacy leaks on the Internet.
UEs are training samples added with invisible but unlearnable noise, which have been found can prevent unauthorized training of machine learning models.
We present a novel technique called Unlearnable Clusters (UCs) to generate label-agnostic unlearnable examples with cluster-wise perturbations.
arXiv Detail & Related papers (2022-12-31T04:26:25Z) - Fast & Furious: Modelling Malware Detection as Evolving Data Streams [6.6892028759947175]
Malware is a major threat to computer systems and imposes many challenges to cyber security.
In this work, we evaluate the impact of concept drift on malware classifiers for two Android datasets.
arXiv Detail & Related papers (2022-05-24T18:43:40Z) - New Datasets for Dynamic Malware Classification [0.0]
We introduce two new, updated datasets of malicious software, VirusSamples and VirusShare.
This paper analyzes multi-class malware classification performance of the balanced and imbalanced version of these two datasets.
Results show that Support Vector Machine, achieves the highest score of 94% in the imbalanced VirusSample dataset.
XGBoost, one of the most common gradient boosting-based models, achieves the highest score of 90% and 80%.in both versions of the VirusShare dataset.
arXiv Detail & Related papers (2021-11-30T08:31:16Z) - Evading Malware Classifiers via Monte Carlo Mutant Feature Discovery [23.294653273180472]
We show how a malicious actor trains a surrogate model to discover binary mutations that cause an instance to be misclassified.
Then, mutated malware is sent to the victim model that takes the place of an antivirus API to test whether it can evade detection.
arXiv Detail & Related papers (2021-06-15T03:31:02Z) - Being Single Has Benefits. Instance Poisoning to Deceive Malware
Classifiers [47.828297621738265]
We show how an attacker can launch a sophisticated and efficient poisoning attack targeting the dataset used to train a malware classifier.
As opposed to other poisoning attacks in the malware detection domain, our attack does not focus on malware families but rather on specific malware instances that contain an implanted trigger.
We propose a comprehensive detection approach that could serve as a future sophisticated defense against this newly discovered severe threat.
arXiv Detail & Related papers (2020-10-30T15:27:44Z) - Adversarial EXEmples: A Survey and Experimental Evaluation of Practical
Attacks on Machine Learning for Windows Malware Detection [67.53296659361598]
adversarial EXEmples can bypass machine learning-based detection by perturbing relatively few input bytes.
We develop a unifying framework that does not only encompass and generalize previous attacks against machine-learning models, but also includes three novel attacks.
These attacks, named Full DOS, Extend and Shift, inject the adversarial payload by respectively manipulating the DOS header, extending it, and shifting the content of the first section.
arXiv Detail & Related papers (2020-08-17T07:16:57Z) - DAEMON: Dataset-Agnostic Explainable Malware Classification Using
Multi-Stage Feature Mining [3.04585143845864]
Malware classification is the task of determining to which family a new malicious variant belongs.
We present DAEMON, a novel dataset-agnostic malware classification tool.
arXiv Detail & Related papers (2020-08-04T21:57:30Z) - MDEA: Malware Detection with Evolutionary Adversarial Learning [16.8615211682877]
MDEA, an Adversarial Malware Detection model uses evolutionary optimization to create attack samples to make the network robust against evasion attacks.
By retraining the model with the evolved malware samples, its performance improves a significant margin.
arXiv Detail & Related papers (2020-02-09T09:59:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.