Interferometric imaging of amplitude and phase of spatial biphoton
states
- URL: http://arxiv.org/abs/2301.13046v1
- Date: Mon, 30 Jan 2023 16:38:47 GMT
- Title: Interferometric imaging of amplitude and phase of spatial biphoton
states
- Authors: Danilo Zia, Nazanin Dehghan, Alessio D'Errico, Fabio Sciarrino,
Ebrahim Karimi
- Abstract summary: High-dimensional biphoton states are promising resources for quantum applications.
Characterising these states is time-consuming and not scalable when projective measurement approaches are adopted.
We introduce biphoton digital holography, in analogy to off-axis digital holography.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: High-dimensional biphoton states are promising resources for quantum
applications, ranging from high-dimensional quantum communications to quantum
imaging. A pivotal task is fully characterising these states, which is
generally time-consuming and not scalable when projective measurement
approaches are adopted. However, new advances in coincidence imaging
technologies allow for overcoming these limitations by parallelising multiple
measurements. Here, we introduce biphoton digital holography, in analogy to
off-axis digital holography, where coincidence imaging of the superposition of
an unknown state with a reference one is used to perform quantum state
tomography. We apply this approach to single photons emitted by spontaneous
parametric down-conversion in a nonlinear crystal when the pump photons possess
various quantum states. The proposed reconstruction technique allows for a more
efficient (3 order-of-magnitude faster) and reliable (an average fidelity of
87%) characterisation of states in arbitrary spatial modes bases, compared with
previously performed experiments. Multi-photon digital holography may pave the
route toward efficient and accurate computational ghost imaging and
high-dimensional quantum information processing.
Related papers
- High-dimensional quantum correlation measurements with an adaptively
gated hybrid single-photon camera [58.720142291102135]
We propose an adaptively-gated hybrid intensified camera (HIC) that combines a high spatial resolution sensor and a high temporal resolution detector.
With a spatial resolution of nearly 9 megapixels and nanosecond temporal resolution, this system allows for the realization of previously infeasible quantum optics experiments.
arXiv Detail & Related papers (2023-05-25T16:59:27Z) - Programmable multi-photon quantum interference in a single spatial mode [0.0]
We show a resource-efficient architecture for multi-photon processing based on time-bin encoding in a single spatial mode.
We employ an efficient quantum dot single-photon source, and a fast programmable time-bin interferometer, to observe the interference of up to 8 photons in 16 modes.
arXiv Detail & Related papers (2023-05-18T17:46:38Z) - Retrieving space-dependent polarization transformations via near-optimal
quantum process tomography [55.41644538483948]
We investigate the application of genetic and machine learning approaches to tomographic problems.
We find that the neural network-based scheme provides a significant speed-up, that may be critical in applications requiring a characterization in real-time.
We expect these results to lay the groundwork for the optimization of tomographic approaches in more general quantum processes.
arXiv Detail & Related papers (2022-10-27T11:37:14Z) - Regression of high dimensional angular momentum states of light [47.187609203210705]
We present an approach to reconstruct input OAM states from measurements of the spatial intensity distributions they produce.
We showcase our approach in a real photonic setup, generating up-to-four-dimensional OAM states through a quantum walk dynamics.
arXiv Detail & Related papers (2022-06-20T16:16:48Z) - Ultra-long photonic quantum walks via spin-orbit metasurfaces [52.77024349608834]
We report ultra-long photonic quantum walks across several hundred optical modes, obtained by propagating a light beam through very few closely-stacked liquid-crystal metasurfaces.
With this setup we engineer quantum walks up to 320 discrete steps, far beyond state-of-the-art experiments.
arXiv Detail & Related papers (2022-03-28T19:37:08Z) - Characterising and Tailoring Spatial Correlations in Multi-Mode
Parametric Downconversion [0.0]
We formalise a description of the two-photon wavefunction in the spatial domain, referred to as the collected joint-transverse-momentum-amplitude (JTMA)
We propose and demonstrate a practical and efficient method to accurately reconstruct the collected JTMA using a simple phase-step scan known as the $2Dpi$-measurement.
arXiv Detail & Related papers (2021-10-07T13:40:28Z) - A quantum-enhanced wide-field phase imager [37.41181188499616]
We introduce a super-sensitive phase imager, which uses space-polarization hyper-entanglement to operate over a large field-of-view without the need of scanning operation.
We show quantum-enhanced imaging of birefringent and non-birefringent phase samples over large areas, with sensitivity improvements over equivalent measurements carried out with equal number of photons.
arXiv Detail & Related papers (2021-05-24T16:37:03Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Scalable multiphoton quantum metrology with neither pre- nor
post-selected measurements [0.0]
We experimentally demonstrate a scalable protocol for quantum-enhanced optical phase estimation.
The robustness of two-mode squeezed vacuum states against loss allows us to outperform schemes based on N00N states.
Our work is important for quantum technologies that rely on multiphoton interference.
arXiv Detail & Related papers (2020-11-04T18:11:33Z) - Two-photon phase-sensing with single-photon detection [0.0]
Path-entangled multi-photon states allow optical phase-sensing beyond the shot-noise limit.
We exploit advanced quantum state engineering based on superposing two photon-pair creation events.
We infer phase shifts by measuring the average intensity of the single-photon beam on a photodiode.
arXiv Detail & Related papers (2020-07-06T08:50:37Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.