Near Optimal Private and Robust Linear Regression
- URL: http://arxiv.org/abs/2301.13273v1
- Date: Mon, 30 Jan 2023 20:33:26 GMT
- Title: Near Optimal Private and Robust Linear Regression
- Authors: Xiyang Liu, Prateek Jain, Weihao Kong, Sewoong Oh, Arun Sai Suggala
- Abstract summary: We propose a variant of the popular differentially private gradient descent (DP-SGD) algorithm with two innovations.
Under label-corruption, this is the first efficient linear regression algorithm to guarantee both $(varepsilon,delta)$-DP and robustness.
- Score: 47.2888113094367
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We study the canonical statistical estimation problem of linear regression
from $n$ i.i.d.~examples under $(\varepsilon,\delta)$-differential privacy when
some response variables are adversarially corrupted. We propose a variant of
the popular differentially private stochastic gradient descent (DP-SGD)
algorithm with two innovations: a full-batch gradient descent to improve sample
complexity and a novel adaptive clipping to guarantee robustness. When there is
no adversarial corruption, this algorithm improves upon the existing
state-of-the-art approach and achieves a near optimal sample complexity. Under
label-corruption, this is the first efficient linear regression algorithm to
guarantee both $(\varepsilon,\delta)$-DP and robustness. Synthetic experiments
confirm the superiority of our approach.
Related papers
- Stochastic gradient descent for streaming linear and rectified linear
systems with Massart noise [9.841406613646813]
We show novel nearly linear convergence guarantees of SGD-exp to the true parameter with up to $50%$ Massart corruption rate.
This is the first convergence guarantee result for robust ReLU regression in the streaming setting.
arXiv Detail & Related papers (2024-03-02T12:45:01Z) - Regression with Label Differential Privacy [64.21020761920322]
We derive a label DP randomization mechanism that is optimal under a given regression loss function.
We prove that the optimal mechanism takes the form of a "randomized response on bins"
arXiv Detail & Related papers (2022-12-12T17:41:32Z) - Retire: Robust Expectile Regression in High Dimensions [3.9391041278203978]
Penalized quantile and expectile regression methods offer useful tools to detect heteroscedasticity in high-dimensional data.
We propose and study (penalized) robust expectile regression (retire)
We show that the proposed procedure can be efficiently solved by a semismooth Newton coordinate descent algorithm.
arXiv Detail & Related papers (2022-12-11T18:03:12Z) - Best Policy Identification in Linear MDPs [70.57916977441262]
We investigate the problem of best identification in discounted linear Markov+Delta Decision in the fixed confidence setting under a generative model.
The lower bound as the solution of an intricate non- optimization program can be used as the starting point to devise such algorithms.
arXiv Detail & Related papers (2022-08-11T04:12:50Z) - On Private Online Convex Optimization: Optimal Algorithms in
$\ell_p$-Geometry and High Dimensional Contextual Bandits [9.798304879986604]
We study the Differentially private (DP) convex optimization problem with streaming data sampled from a distribution and arrives sequentially.
We also consider the continual release model where parameters related to private information are updated and released upon each new data, often known as the online algorithms.
Our algorithm achieves in linear time the optimal excess risk when $1pleq 2$ and the state-of-the-art excess risk meeting the non-private lower ones when $2pleqinfty$.
arXiv Detail & Related papers (2022-06-16T12:09:47Z) - Robust Regression Revisited: Acceleration and Improved Estimation Rates [25.54653340884806]
We study fast algorithms for statistical regression problems under the strong contamination model.
The goal is to approximately optimize a generalized linear model (GLM) given adversarially corrupted samples.
We present nearly-linear time algorithms for robust regression problems with improved runtime or estimation guarantees.
arXiv Detail & Related papers (2021-06-22T17:21:56Z) - Single-Timescale Stochastic Nonconvex-Concave Optimization for Smooth
Nonlinear TD Learning [145.54544979467872]
We propose two single-timescale single-loop algorithms that require only one data point each step.
Our results are expressed in a form of simultaneous primal and dual side convergence.
arXiv Detail & Related papers (2020-08-23T20:36:49Z) - Private Stochastic Non-Convex Optimization: Adaptive Algorithms and
Tighter Generalization Bounds [72.63031036770425]
We propose differentially private (DP) algorithms for bound non-dimensional optimization.
We demonstrate two popular deep learning methods on the empirical advantages over standard gradient methods.
arXiv Detail & Related papers (2020-06-24T06:01:24Z) - Least Squares Regression with Markovian Data: Fundamental Limits and
Algorithms [69.45237691598774]
We study the problem of least squares linear regression where the data-points are dependent and are sampled from a Markov chain.
We establish sharp information theoretic minimax lower bounds for this problem in terms of $tau_mathsfmix$.
We propose an algorithm based on experience replay--a popular reinforcement learning technique--that achieves a significantly better error rate.
arXiv Detail & Related papers (2020-06-16T04:26:50Z) - Efficient Algorithms for Multidimensional Segmented Regression [42.046881924063044]
We study the fundamental problem of fixed design em multidimensional regression.
We provide the first sample and computationally efficient algorithm for this problem in any fixed dimension.
Our algorithm relies on a simple merging iterative approach, which is novel in the multidimensional setting.
arXiv Detail & Related papers (2020-03-24T19:39:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.