論文の概要: Benchmarking Model Predictive Control Algorithms in Building Optimization Testing Framework (BOPTEST)
- arxiv url: http://arxiv.org/abs/2301.13447v2
- Date: Mon, 1 Apr 2024 20:18:04 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-04 14:01:35.052300
- Title: Benchmarking Model Predictive Control Algorithms in Building Optimization Testing Framework (BOPTEST)
- Title(参考訳): ビルディング最適化テストフレームワーク(BOPTEST)におけるベンチマークモデル予測制御アルゴリズム
- Authors: Saman Mostafavi, Chihyeon Song, Aayushman Sharma, Raman Goyal, Alejandro Brito,
- Abstract要約: 物理に基づく建築エミュレータのためのデータ駆動モデリングおよび制御フレームワークを提案する。
a)モデル評価を加速し、コスト効率の良い勾配を提供し、モデル予測制御(MPC)における後退地平線に対する良好な予測精度を維持する、微分可能な代理モデルのオフライントレーニング。
ビルディング最適化テストフレームワーク(BOPTEST)で利用可能な様々なテストケースに対して、複数のサロゲートモデルと最適化フレームワークを用いて、モデリングと制御性能を広範囲に評価する。
- 参考スコア(独自算出の注目度): 40.17692290400862
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We present a data-driven modeling and control framework for physics-based building emulators. Our approach consists of: (a) Offline training of differentiable surrogate models that accelerate model evaluations, provide cost-effective gradients, and maintain good predictive accuracy for the receding horizon in Model Predictive Control (MPC), and (b) Formulating and solving nonlinear building HVAC MPC problems. We extensively evaluate the modeling and control performance using multiple surrogate models and optimization frameworks across various test cases available in the Building Optimization Testing Framework (BOPTEST). Our framework is compatible with other modeling techniques and can be customized with different control formulations, making it adaptable and future-proof for test cases currently under development for BOPTEST. This modularity provides a path towards prototyping predictive controllers in large buildings, ensuring scalability and robustness in real-world applications.
- Abstract(参考訳): 物理に基づく建築エミュレータのためのデータ駆動モデリングおよび制御フレームワークを提案する。
私たちのアプローチは以下の通りです。
(a)モデル評価を加速し、コスト効率の良い勾配を提供し、モデル予測制御(MPC)における後退地平線の予測精度を良好に維持する微分代理モデルのオフライントレーニング
b) 非線形建築HVAC MPC問題の定式化と解法
BOPTEST(Building Optimization Testing Framework)で利用可能な様々なテストケースに対して、複数のサロゲートモデルと最適化フレームワークを用いて、モデリングと制御性能を広範囲に評価する。
我々のフレームワークは、他のモデリング手法と互換性があり、異なる制御定式化でカスタマイズできるため、現在開発中のBOPTESTのテストケースに適応可能で、将来性が高い。
このモジュラリティは、大規模な建物における予測コントローラのプロトタイプ化への道を提供し、現実世界のアプリケーションにおけるスケーラビリティと堅牢性を保証する。
関連論文リスト
- Towards Stable Machine Learning Model Retraining via Slowly Varying Sequences [6.067007470552307]
そこで本研究では,繰り返しのトレーニングにおいて安定な機械学習モデルのシーケンスを見つける手法を提案する。
最適モデルの復元が保証される混合整数最適化の定式化を開発する。
本手法は, 予測力の小さい, 制御可能な犠牲を伴い, 厳密に訓練されたモデルよりも強い安定性を示す。
論文 参考訳(メタデータ) (2024-03-28T22:45:38Z) - Data-driven Nonlinear Model Reduction using Koopman Theory: Integrated
Control Form and NMPC Case Study [56.283944756315066]
そこで本研究では,遅延座標符号化と全状態復号化を組み合わせた汎用モデル構造を提案し,Koopmanモデリングと状態推定を統合した。
ケーススタディでは,本手法が正確な制御モデルを提供し,高純度極低温蒸留塔のリアルタイム非線形予測制御を可能にすることを実証している。
論文 参考訳(メタデータ) (2024-01-09T11:54:54Z) - Variational Exploration Module VEM: A Cloud-Native Optimization and
Validation Tool for Geospatial Modeling and AI Workflows [0.0]
クラウドベースのデプロイメントは、これらのモデリングとAIのスケールアップに役立つ。
我々は,クラウドにデプロイされたモデリングの最適化と検証を容易にする変分探索モジュールを開発した。
モデルに依存しないモジュールの柔軟性と堅牢性は、実世界のアプリケーションを用いて実証される。
論文 参考訳(メタデータ) (2023-11-26T23:07:00Z) - BEAR: Physics-Principled Building Environment for Control and
Reinforcement Learning [9.66911049633598]
BEARは制御強化学習のための物理を基礎とした建築環境である。
研究者はモデルベースとモデルフリーの両方のコントローラを、外部ビルディングシミュレータを併用することなく、Pythonの標準ビルディングモデルの広範なコレクションを使用してベンチマークすることができる。
モデル予測制御(MPC)と2つのケーススタディを持つ最先端RL法の両方を含む,異なるコントローラによるBEARの互換性と性能を実証する。
論文 参考訳(メタデータ) (2022-11-27T06:36:35Z) - When to Update Your Model: Constrained Model-based Reinforcement
Learning [50.74369835934703]
モデルベースRL(MBRL)の非遅延性能保証のための新規で一般的な理論スキームを提案する。
続いて導いた境界は、モデルシフトとパフォーマンス改善の関係を明らかにします。
さらなる例では、動的に変化する探索からの学習モデルが、最終的なリターンの恩恵をもたらすことが示されている。
論文 参考訳(メタデータ) (2022-10-15T17:57:43Z) - Slimmable Domain Adaptation [112.19652651687402]
重み付けモデルバンクを用いて、ドメイン間の一般化を改善するためのシンプルなフレームワーク、Slimmable Domain Adaptationを導入する。
私たちのフレームワークは、他の競合するアプローチを、複数のベンチマークにおいて非常に大きなマージンで上回ります。
論文 参考訳(メタデータ) (2022-06-14T06:28:04Z) - A Nested Weighted Tchebycheff Multi-Objective Bayesian Optimization
Approach for Flexibility of Unknown Utopia Estimation in Expensive Black-box
Design Problems [0.0]
既存の研究では、未知のユートピアを定式化するための重み付きTchebycheff MOBOアプローチが実証されている。
モデルアンサンブルから回帰モデル選択手順を構築する,ネスト重み付きTchebycheff MOBOフレームワークを提案する。
論文 参考訳(メタデータ) (2021-10-16T00:44:06Z) - Evaluating model-based planning and planner amortization for continuous
control [79.49319308600228]
我々は、モデル予測制御(MPC)と学習モデルとモデルフリーポリシー学習を組み合わせたハイブリッドアプローチを採っている。
モデルフリーエージェントは高いDoF制御問題においても強いベースラインであることがわかった。
モデルに基づくプランナを,パフォーマンスを損なうことなく,計画が損なわれるようなポリシーに置き換えることが可能であることを示す。
論文 参考訳(メタデータ) (2021-10-07T12:00:40Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。