論文の概要: Bayesian Experimental Design for Model Discrepancy Calibration: An Auto-Differentiable Ensemble Kalman Inversion Approach
- arxiv url: http://arxiv.org/abs/2504.20319v1
- Date: Tue, 29 Apr 2025 00:10:45 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-05-02 19:15:54.698824
- Title: Bayesian Experimental Design for Model Discrepancy Calibration: An Auto-Differentiable Ensemble Kalman Inversion Approach
- Title(参考訳): モデル差分校正のためのベイズ実験設計:自動微分可能アンサンブルカルマンインバージョンアプローチ
- Authors: Huchen Yang, Xinghao Dong, Jin-Long Wu,
- Abstract要約: 自動微分可能アンサンブルカルマンインバージョン(AD-EKI)によるハイブリッドBEDフレームワークを提案する。
我々は実験的な設計を反復的に最適化し、標準BED法で処理される低次元物理パラメータの推論を分離する。
提案手法は古典的対流拡散BED例を用いて検討した。
- 参考スコア(独自算出の注目度): 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Bayesian experimental design (BED) offers a principled framework for optimizing data acquisition by leveraging probabilistic inference. However, practical implementations of BED are often compromised by model discrepancy, i.e., the mismatch between predictive models and true physical systems, which can potentially lead to biased parameter estimates. While data-driven approaches have been recently explored to characterize the model discrepancy, the resulting high-dimensional parameter space poses severe challenges for both Bayesian updating and design optimization. In this work, we propose a hybrid BED framework enabled by auto-differentiable ensemble Kalman inversion (AD-EKI) that addresses these challenges by providing a computationally efficient, gradient-free alternative to estimate the information gain for high-dimensional network parameters. The AD-EKI allows a differentiable evaluation of the utility function in BED and thus facilitates the use of standard gradient-based methods for design optimization. In the proposed hybrid framework, we iteratively optimize experimental designs, decoupling the inference of low-dimensional physical parameters handled by standard BED methods, from the high-dimensional model discrepancy handled by AD-EKI. The identified optimal designs for the model discrepancy enable us to systematically collect informative data for its calibration. The performance of the proposed method is studied by a classical convection-diffusion BED example, and the hybrid framework enabled by AD-EKI efficiently identifies informative data to calibrate the model discrepancy and robustly infers the unknown physical parameters in the modeled system. Besides addressing the challenges of BED with model discrepancy, AD-EKI also potentially fosters efficient and scalable frameworks in many other areas with bilevel optimization, such as meta-learning and structure optimization.
- Abstract(参考訳): Bayesian experimental design (BED) は確率的推論を利用してデータ取得を最適化するための原則的なフレームワークを提供する。
しかしながら、BEDの実践的な実装は、しばしばモデルの不一致、すなわち予測モデルと真の物理系とのミスマッチによって妥協される。
データ駆動型アプローチはモデルの相違を特徴付けるために最近研究されているが、結果として高次元のパラメータ空間はベイジアン更新と設計最適化の両方に深刻な課題をもたらす。
本研究では,高次元ネットワークパラメータに対する情報ゲインを推定するための計算効率が高く,勾配のない代替手段を提供することにより,これらの課題に対処する,自動微分アンサンブルKalmanインバージョン(AD-EKI)によって実現可能なハイブリッドBEDフレームワークを提案する。
AD-EKIは、BEDにおけるユーティリティ関数の微分可能な評価を可能にし、設計最適化に標準勾配法を使用するのを容易にする。
提案するハイブリッドフレームワークでは,AD-EKIで処理される高次元モデル誤差から,標準BED法で処理される低次元物理パラメータの推論を分離し,実験的な設計を反復的に最適化する。
モデル不一致に対する最適設計により,キャリブレーションのための情報収集を体系的に行うことができる。
提案手法の性能は古典的対流拡散BEDの例を用いて検討し,AD-EKIにより実現されたハイブリッドフレームワークは,モデル誤差を校正し,未知の物理パラメータをモデルシステムで頑健に推測する情報的データを効率的に同定する。
モデル不一致によるBEDの課題に対処するだけでなく、AD-EKIはメタラーニングや構造最適化など、他の多くの分野において、効率的でスケーラブルなフレームワークを促進する可能性がある。
関連論文リスト
- Active Learning of Model Discrepancy with Bayesian Experimental Design [0.0]
逐次実験設計(BED)から得られたデータに基づいてモデル差分を効率的に学習する手法を提案する。
提案手法は, 逐次BEDによって提案されるデータを用いて, 高次元モデル差分率の能動的学習に対して, 効率的かつ堅牢であることを示す。
また,提案手法は古典的数値解法と近代自己微分可能解法の両方と互換性があることを実証した。
論文 参考訳(メタデータ) (2025-02-07T22:54:20Z) - Diffusion Model for Data-Driven Black-Box Optimization [54.25693582870226]
我々は、強力な生成AI技術である拡散モデルに注目し、ブラックボックス最適化の可能性について検討する。
本研究では,1)実数値報酬関数のノイズ測定と,2)対比較に基づく人間の嗜好の2種類のラベルについて検討する。
提案手法は,設計最適化問題を条件付きサンプリング問題に再構成し,拡散モデルのパワーを有効活用する。
論文 参考訳(メタデータ) (2024-03-20T00:41:12Z) - Functional Graphical Models: Structure Enables Offline Data-Driven Optimization [111.28605744661638]
構造がサンプル効率のよいデータ駆動最適化を実現する方法を示す。
また、FGM構造自体を推定するデータ駆動最適化アルゴリズムを提案する。
論文 参考訳(メタデータ) (2024-01-08T22:33:14Z) - Ensemble Kalman Filtering Meets Gaussian Process SSM for Non-Mean-Field and Online Inference [47.460898983429374]
我々は,非平均場(NMF)変動推定フレームワークにアンサンブルカルマンフィルタ(EnKF)を導入し,潜在状態の後方分布を近似する。
EnKFとGPSSMのこの新しい結婚は、変分分布の学習における広範なパラメータ化の必要性をなくすだけでなく、エビデンスの下限(ELBO)の解釈可能でクローズドな近似を可能にする。
得られたEnKF支援オンラインアルゴリズムは、データ適合精度を確保しつつ、モデル正規化を組み込んで過度適合を緩和し、目的関数を具現化する。
論文 参考訳(メタデータ) (2023-12-10T15:22:30Z) - Active-Learning-Driven Surrogate Modeling for Efficient Simulation of
Parametric Nonlinear Systems [0.0]
支配方程式がなければ、パラメトリック還元次代理モデルを非侵襲的に構築する必要がある。
我々の研究は、パラメータのスナップショットを効率的に表示するための非侵入的最適性基準を提供する。
カーネルベースの浅層ニューラルネットワークを用いた能動的学習駆動サロゲートモデルを提案する。
論文 参考訳(メタデータ) (2023-06-09T18:01:14Z) - Design Amortization for Bayesian Optimal Experimental Design [70.13948372218849]
予測情報ゲイン(EIG)のバウンダリに関してパラメータ化された変分モデルを最適化する。
実験者が1つの変分モデルを最適化し、潜在的に無限に多くの設計に対してEIGを推定できる新しいニューラルアーキテクチャを提案する。
論文 参考訳(メタデータ) (2022-10-07T02:12:34Z) - MACE: An Efficient Model-Agnostic Framework for Counterfactual
Explanation [132.77005365032468]
MACE(Model-Agnostic Counterfactual Explanation)の新たな枠組みを提案する。
MACE法では, 優れた反実例を見つけるための新しいRL法と, 近接性向上のための勾配のない降下法を提案する。
公開データセットの実験は、有効性、空間性、近接性を向上して検証する。
論文 参考訳(メタデータ) (2022-05-31T04:57:06Z) - Model Selection for Bayesian Autoencoders [25.619565817793422]
本稿では,オートエンコーダの出力と経験的データ分布との分散スライス-ワッサーシュタイン距離を最適化することを提案する。
我々のBAEは、フレキシブルなディリクレ混合モデルを潜在空間に適合させることにより、生成モデルに変換する。
我々は,教師なしの学習課題に対する膨大な実験的キャンペーンを質的かつ定量的に評価し,先行研究が重要となる小規模データ体制において,我々のアプローチが最先端の結果をもたらすことを示す。
論文 参考訳(メタデータ) (2021-06-11T08:55:00Z) - Control as Hybrid Inference [62.997667081978825]
本稿では、反復推論と償却推論のバランスを自然に仲介するCHIの実装について述べる。
連続的な制御ベンチマークでアルゴリズムのスケーラビリティを検証し、強力なモデルフリーおよびモデルベースラインを上回る性能を示す。
論文 参考訳(メタデータ) (2020-07-11T19:44:09Z) - Efficient Ensemble Model Generation for Uncertainty Estimation with
Bayesian Approximation in Segmentation [74.06904875527556]
アンサンブルセグメンテーションモデルを構築するための汎用的で効率的なセグメンテーションフレームワークを提案する。
提案手法では,層選択法を用いて効率よくアンサンブルモデルを生成することができる。
また,新たな画素単位の不確実性損失を考案し,予測性能を向上する。
論文 参考訳(メタデータ) (2020-05-21T16:08:38Z) - Sequential Bayesian Experimental Design for Implicit Models via Mutual
Information [12.68659360172393]
自然科学と医学科学に特に興味を持つモデルのクラスは暗黙のモデルである。
モデルパラメータとシミュレーションデータ間の相互情報(MI)を実用関数として用いたパラメータ推定のための新しい逐次設計フレームワークを考案する。
我々のフレームワークは、テストされた様々な暗黙のモデルに対して効率的であることが分かり、数回の反復で正確なパラメータ推定が得られます。
論文 参考訳(メタデータ) (2020-03-20T16:52:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。