Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
- URL: http://arxiv.org/abs/2301.13749v2
- Date: Fri, 26 May 2023 18:34:07 GMT
- Title: Multi-Fidelity Covariance Estimation in the Log-Euclidean Geometry
- Authors: Aimee Maurais and Terrence Alsup and Benjamin Peherstorfer and Youssef
Marzouk
- Abstract summary: We introduce a multi-fidelity estimator of covariance matrices that employs the log-Euclidean geometry of the symmetric positive-definite manifold.
We develop an optimal sample allocation scheme that minimizes the mean-squared error of the estimator given a fixed budget.
Evaluations of our approach using data from physical applications demonstrate more accurate metric learning and speedups of more than one order of magnitude compared to benchmarks.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a multi-fidelity estimator of covariance matrices that employs
the log-Euclidean geometry of the symmetric positive-definite manifold. The
estimator fuses samples from a hierarchy of data sources of differing
fidelities and costs for variance reduction while guaranteeing definiteness, in
contrast with previous approaches. The new estimator makes covariance
estimation tractable in applications where simulation or data collection is
expensive; to that end, we develop an optimal sample allocation scheme that
minimizes the mean-squared error of the estimator given a fixed budget.
Guaranteed definiteness is crucial to metric learning, data assimilation, and
other downstream tasks. Evaluations of our approach using data from physical
applications (heat conduction, fluid dynamics) demonstrate more accurate metric
learning and speedups of more than one order of magnitude compared to
benchmarks.
Related papers
- Multivariate root-n-consistent smoothing parameter free matching estimators and estimators of inverse density weighted expectations [51.000851088730684]
We develop novel modifications of nearest-neighbor and matching estimators which converge at the parametric $sqrt n $-rate.
We stress that our estimators do not involve nonparametric function estimators and in particular do not rely on sample-size dependent parameters smoothing.
arXiv Detail & Related papers (2024-07-11T13:28:34Z) - A Geometric Unification of Distributionally Robust Covariance Estimators: Shrinking the Spectrum by Inflating the Ambiguity Set [20.166217494056916]
We propose a principled approach to construct covariance estimators without imposing restrictive assumptions.
We show that our robust estimators are efficiently computable and consistent.
Numerical experiments based on synthetic and real data show that our robust estimators are competitive with state-of-the-art estimators.
arXiv Detail & Related papers (2024-05-30T15:01:18Z) - Multifidelity Covariance Estimation via Regression on the Manifold of Symmetric Positive Definite Matrices [0.42855555838080844]
We show that our manifold regression multifidelity (MRMF) covariance estimator is a maximum likelihood estimator under a certain error model on manifold space.
We demonstrate via numerical examples that the MRMF estimator can provide significant decreases, up to one order of magnitude, in squared estimation error.
arXiv Detail & Related papers (2023-07-23T21:46:55Z) - Leveraging Variational Autoencoders for Parameterized MMSE Estimation [10.141454378473972]
We propose a variational autoencoder-based framework for parameterizing a conditional linear minimum mean squared error estimator.
The derived estimator is shown to approximate the minimum mean squared error estimator by utilizing the variational autoencoder as a generative prior for the estimation problem.
We conduct a rigorous analysis by bounding the difference between the proposed and the minimum mean squared error estimator.
arXiv Detail & Related papers (2023-07-11T15:41:34Z) - Learning to Estimate Without Bias [57.82628598276623]
Gauss theorem states that the weighted least squares estimator is a linear minimum variance unbiased estimation (MVUE) in linear models.
In this paper, we take a first step towards extending this result to non linear settings via deep learning with bias constraints.
A second motivation to BCE is in applications where multiple estimates of the same unknown are averaged for improved performance.
arXiv Detail & Related papers (2021-10-24T10:23:51Z) - Meta Learning Low Rank Covariance Factors for Energy-Based Deterministic
Uncertainty [58.144520501201995]
Bi-Lipschitz regularization of neural network layers preserve relative distances between data instances in the feature spaces of each layer.
With the use of an attentive set encoder, we propose to meta learn either diagonal or diagonal plus low-rank factors to efficiently construct task specific covariance matrices.
We also propose an inference procedure which utilizes scaled energy to achieve a final predictive distribution.
arXiv Detail & Related papers (2021-10-12T22:04:19Z) - Near-optimal inference in adaptive linear regression [60.08422051718195]
Even simple methods like least squares can exhibit non-normal behavior when data is collected in an adaptive manner.
We propose a family of online debiasing estimators to correct these distributional anomalies in at least squares estimation.
We demonstrate the usefulness of our theory via applications to multi-armed bandit, autoregressive time series estimation, and active learning with exploration.
arXiv Detail & Related papers (2021-07-05T21:05:11Z) - Statistical Inference for High-Dimensional Linear Regression with
Blockwise Missing Data [13.48481978963297]
Blockwise missing data occurs when we integrate multisource or multimodality data where different sources or modalities contain complementary information.
We propose a computationally efficient estimator for the regression coefficient vector based on carefully constructed unbiased estimating equations.
Numerical studies and application analysis of the Alzheimer's Disease Neuroimaging Initiative data show that the proposed method performs better and benefits more from unsupervised samples than existing methods.
arXiv Detail & Related papers (2021-06-07T05:12:42Z) - Machine learning for causal inference: on the use of cross-fit
estimators [77.34726150561087]
Doubly-robust cross-fit estimators have been proposed to yield better statistical properties.
We conducted a simulation study to assess the performance of several estimators for the average causal effect (ACE)
When used with machine learning, the doubly-robust cross-fit estimators substantially outperformed all of the other estimators in terms of bias, variance, and confidence interval coverage.
arXiv Detail & Related papers (2020-04-21T23:09:55Z) - Asymptotic Analysis of an Ensemble of Randomly Projected Linear
Discriminants [94.46276668068327]
In [1], an ensemble of randomly projected linear discriminants is used to classify datasets.
We develop a consistent estimator of the misclassification probability as an alternative to the computationally-costly cross-validation estimator.
We also demonstrate the use of our estimator for tuning the projection dimension on both real and synthetic data.
arXiv Detail & Related papers (2020-04-17T12:47:04Z) - Covariance Estimation for Matrix-valued Data [9.739753590548796]
We propose a class of distribution-free regularized covariance estimation methods for high-dimensional matrix data.
We formulate a unified framework for estimating bandable covariance, and introduce an efficient algorithm based on rank one unconstrained Kronecker product approximation.
We demonstrate the superior finite-sample performance of our methods using simulations and real applications from a gridded temperature anomalies dataset and a S&P 500 stock data analysis.
arXiv Detail & Related papers (2020-04-11T02:15:26Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.