Does Deep Active Learning Work in the Wild?
- URL: http://arxiv.org/abs/2302.00098v2
- Date: Fri, 06 Dec 2024 04:51:31 GMT
- Title: Does Deep Active Learning Work in the Wild?
- Authors: Simiao Ren, Saad Lahrichi, Yang Deng, Willie J. Padilla, Leslie Collins, Jordan Malof,
- Abstract summary: Deep active learning (DAL) methods have shown significant improvements in sample efficiency compared to simple random sampling.
Here, we argue that in real-world settings, or in the wild, there is significant uncertainty regarding good HPs.
We evaluate the performance of eleven modern DAL methods on eight benchmark problems.
- Score: 9.722499619824442
- License:
- Abstract: Deep active learning (DAL) methods have shown significant improvements in sample efficiency compared to simple random sampling. While these studies are valuable, they nearly always assume that optimal DAL hyperparameter (HP) settings are known in advance, or optimize the HPs through repeating DAL several times with different HP settings. Here, we argue that in real-world settings, or in the wild, there is significant uncertainty regarding good HPs, and their optimization contradicts the premise of using DAL (i.e., we require labeling efficiency). In this study, we evaluate the performance of eleven modern DAL methods on eight benchmark problems as we vary a key HP shared by all methods: the pool ratio. Despite adjusting only one HP, our results indicate that eight of the eleven DAL methods sometimes underperform relative to simple random sampling and some frequently perform worse. Only three methods always outperform random sampling (albeit narrowly), and we find that these methods all utilize diversity to select samples - a relatively simple criterion. Our findings reveal the limitations of existing DAL methods when deployed in the wild, and present this as an important new open problem in the field.
Related papers
- Uncertainty Aware Learning for Language Model Alignment [97.36361196793929]
We propose uncertainty-aware learning (UAL) to improve the model alignment of different task scenarios.
We implement UAL in a simple fashion -- adaptively setting the label smoothing value of training according to the uncertainty of individual samples.
Experiments on widely used benchmarks demonstrate that our UAL significantly and consistently outperforms standard supervised fine-tuning.
arXiv Detail & Related papers (2024-06-07T11:37:45Z) - An Empirical Study on the Efficacy of Deep Active Learning for Image
Classification [11.398892277968427]
Deep Active Learning (DAL) has been advocated as a promising method to reduce labeling costs in supervised learning.
Existing evaluations of DAL methods are based on different settings, and their results are controversial.
This paper comprehensively evaluates 19 existing DAL methods in a uniform setting.
arXiv Detail & Related papers (2022-11-30T17:44:59Z) - Towards Unsupervised HPO for Outlier Detection [23.77292404327994]
We propose the first systematic approach called HPOD that is based on meta-learning.
HPOD capitalizes on the prior performance of a large collection of HPs on existing OD benchmark datasets.
It adapts (originally supervised) sequential model-based optimization to identify promising HPs efficiently.
arXiv Detail & Related papers (2022-08-24T18:11:22Z) - Hyperparameter Sensitivity in Deep Outlier Detection: Analysis and a
Scalable Hyper-Ensemble Solution [21.130842136324528]
We conduct the first large-scale analysis on the HP sensitivity of deep OD methods.
We design a HP-robust and scalable deep hyper-ensemble model called ROBOD that assembles models with varying HP configurations.
arXiv Detail & Related papers (2022-06-15T16:46:00Z) - A Comparative Survey of Deep Active Learning [76.04825433362709]
Active Learning (AL) is a set of techniques for reducing labeling cost by sequentially selecting data samples from a large unlabeled data pool for labeling.
Deep Learning (DL) is data-hungry, and the performance of DL models scales monotonically with more training data.
In recent years, Deep Active Learning (DAL) has risen as feasible solutions for maximizing model performance while minimizing the expensive labeling cost.
arXiv Detail & Related papers (2022-03-25T05:17:24Z) - A Lagrangian Duality Approach to Active Learning [119.36233726867992]
We consider the batch active learning problem, where only a subset of the training data is labeled.
We formulate the learning problem using constrained optimization, where each constraint bounds the performance of the model on labeled samples.
We show, via numerical experiments, that our proposed approach performs similarly to or better than state-of-the-art active learning methods.
arXiv Detail & Related papers (2022-02-08T19:18:49Z) - Revisiting the Performance of iALS on Item Recommendation Benchmarks [19.704506591363256]
Matrix factorization learned by implicit alternating least squares (iALS) is a popular baseline in recommender system research publications.
Recent studies suggest that its prediction quality is not competitive with the current state of the art.
We revisit four well-studied benchmarks where iALS was reported to perform poorly and show that with proper tuning, iALS is highly competitive.
arXiv Detail & Related papers (2021-10-26T21:30:57Z) - Scalable Personalised Item Ranking through Parametric Density Estimation [53.44830012414444]
Learning from implicit feedback is challenging because of the difficult nature of the one-class problem.
Most conventional methods use a pairwise ranking approach and negative samplers to cope with the one-class problem.
We propose a learning-to-rank approach, which achieves convergence speed comparable to the pointwise counterpart.
arXiv Detail & Related papers (2021-05-11T03:38:16Z) - Learning Sampling Policy for Faster Derivative Free Optimization [100.27518340593284]
We propose a new reinforcement learning based ZO algorithm (ZO-RL) with learning the sampling policy for generating the perturbations in ZO optimization instead of using random sampling.
Our results show that our ZO-RL algorithm can effectively reduce the variances of ZO gradient by learning a sampling policy, and converge faster than existing ZO algorithms in different scenarios.
arXiv Detail & Related papers (2021-04-09T14:50:59Z) - Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration [143.43658264904863]
We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
arXiv Detail & Related papers (2020-08-18T04:34:21Z) - Practical and sample efficient zero-shot HPO [8.41866793161234]
We provide an overview of available approaches and introduce two novel techniques to handle the problem.
The first is based on a surrogate model and adaptively chooses pairs of dataset, configuration to query.
The second is for settings where finding, tuning and testing a surrogate model is problematic, is a multi-fidelity technique combining HyperBand with submodular optimization.
arXiv Detail & Related papers (2020-07-27T08:56:55Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.