Controlled emission of entangled multiphoton states from cascaded
quantum wells
- URL: http://arxiv.org/abs/2302.00474v1
- Date: Wed, 1 Feb 2023 14:35:41 GMT
- Title: Controlled emission of entangled multiphoton states from cascaded
quantum wells
- Authors: Amir Sivan and Meir Orenstein
- Abstract summary: We propose a source of entangled multiphoton states based on spontaneous emission from a ladder of a cascaded quantum well structure.
The coupling between the quantum wells enables a many-path evolution with the emission of photon-number combination states in three modes.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We propose a source of entangled multiphoton states based on spontaneous
emission from a ladder of a cascaded quantum well structure. The coupling
between the quantum wells enables a many-path evolution with the emission of
photon-number combination states in three modes. The multiphoton state has
unique properties, such as control of the entanglement between two multiphoton
modes by measuring the third. We discuss briefly an application as a qubit-pair
source with an error-detection ancilla.
Related papers
- Few-Photon SUPER: Quantum emitter inversion via two off-resonant photon modes [0.0]
We investigate an extended Jaynes-Cummings model where two photon modes are coupled off-resonantly to a quantum emitter.
We identify few-photon scattering mechanisms that lead to a full inversion of the emitter while transferring off-resonant photons from one mode to another.
Our results can be understood as quantized analogue of the recently developed off-resonant quantum control scheme known as Swing-UP of quantum EmitteR.
arXiv Detail & Related papers (2024-05-30T14:32:18Z) - Many-photon scattering and entangling in a waveguide with a
{\Lambda}-type atom [55.2480439325792]
We show that after transmission of a short few-photon pulse, the final state of the atom and all the photons is a genuine multipartite entangled state belonging to the W class.
The parameters of the input pulse are optimized to maximize the efficiency of three- and four-partite W-state production.
arXiv Detail & Related papers (2023-09-25T09:06:28Z) - Generation and characterization of polarization-entangled states using
quantum dot single-photon sources [0.0]
Single-photon sources based on semiconductor quantum dots find several applications in quantum information processing.
We implement this approach via a simple and compact design that generates entangled photon pairs in the polarization degree of freedom.
Our source shows long-term stability and high quality of the generated entangled states, thus constituting a reliable building block for optical quantum technologies.
arXiv Detail & Related papers (2023-08-04T16:07:12Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Deterministic generation of multi-photon bundles in a quantum Rabi model [7.475750944627122]
We propose a scheme that generates multi-photon bundles via virtual excitations in a quantum Rabi model.
We show that the driving pulses induce deterministic emission of multiple photons from the eigenstates of the quantum Rabi model.
We calculate the generalized second-order correlation functions of the output photons, which reveal that the emitted photons form antibunched multi-photon bundles.
arXiv Detail & Related papers (2022-10-07T15:21:33Z) - Visualizing the breakdown of quantum multimodality in coherently driven
light-matter interaction [0.0]
We show that the saturation of a multiphoton transition is accompanied by a gradual collapse of quantum multimodality.
We also reveal two coexistent quantum beats in the intensity correlation function of the forwards scattered photons.
arXiv Detail & Related papers (2022-06-22T16:31:39Z) - Tunable photon-mediated interactions between spin-1 systems [68.8204255655161]
We show how to harness multi-level emitters with several optical transitions to engineer photon-mediated interactions between effective spin-1 systems.
Our results expand the quantum simulation toolbox available in cavity QED and quantum nanophotonic setups.
arXiv Detail & Related papers (2022-06-03T14:52:34Z) - Correlated steady states and Raman lasing in continuously pumped and
probed atomic ensembles [68.8204255655161]
We consider an ensemble of Alkali atoms that are continuously optically pumped and probed.
Due to the collective scattering of photons at large optical depth, the steady state of atoms does not correspond to an uncorrelated tensor-product state.
We find and characterize regimes of Raman lasing, akin to the model of a superradiant laser.
arXiv Detail & Related papers (2022-05-10T06:54:54Z) - Classification of three-photon states in waveguide quantum
electrodynamics [77.34726150561087]
We show that the rich interplay of effects from order, chaos to localisation found in two-photon systems extends naturally to three-photon systems.
There also exist interaction-induced localised states unique to three-photon systems such as bound trimers, corner states and trimer edge states.
arXiv Detail & Related papers (2020-12-07T23:41:09Z) - Optical repumping of resonantly excited quantum emitters in hexagonal
boron nitride [52.77024349608834]
We present an optical co-excitation scheme which uses a weak non-resonant laser to reduce transitions to a dark state and amplify the photoluminescence from quantum emitters in hexagonal boron nitride (hBN)
Our results are important for the deployment of atom-like defects in hBN as reliable building blocks for quantum photonic applications.
arXiv Detail & Related papers (2020-09-11T10:15:22Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.