Weighted Conditional Flow Matching
- URL: http://arxiv.org/abs/2507.22270v1
- Date: Tue, 29 Jul 2025 22:42:51 GMT
- Title: Weighted Conditional Flow Matching
- Authors: Sergio Calvo-Ordonez, Matthieu Meunier, Alvaro Cartea, Christoph Reisinger, Yarin Gal, Jose Miguel Hernandez-Lobato,
- Abstract summary: Conditional flow matching (CFM) has emerged as a powerful framework for training continuous normalizing flows.<n>We propose weighted Conditional Flow Matching (W-CFM), a novel approach that modifies the classical CFM loss by weighting each training pair $(x, y)$ with a Gibbs kernel.
- Score: 26.88652399504886
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Conditional flow matching (CFM) has emerged as a powerful framework for training continuous normalizing flows due to its computational efficiency and effectiveness. However, standard CFM often produces paths that deviate significantly from straight-line interpolations between prior and target distributions, making generation slower and less accurate due to the need for fine discretization at inference. Recent methods enhance CFM performance by inducing shorter and straighter trajectories but typically rely on computationally expensive mini-batch optimal transport (OT). Drawing insights from entropic optimal transport (EOT), we propose Weighted Conditional Flow Matching (W-CFM), a novel approach that modifies the classical CFM loss by weighting each training pair $(x, y)$ with a Gibbs kernel. We show that this weighting recovers the entropic OT coupling up to some bias in the marginals, and we provide the conditions under which the marginals remain nearly unchanged. Moreover, we establish an equivalence between W-CFM and the minibatch OT method in the large-batch limit, showing how our method overcomes computational and performance bottlenecks linked to batch size. Empirically, we test our method on unconditional generation on various synthetic and real datasets, confirming that W-CFM achieves comparable or superior sample quality, fidelity, and diversity to other alternative baselines while maintaining the computational efficiency of vanilla CFM.
Related papers
- Taming Flow Matching with Unbalanced Optimal Transport into Fast Pansharpening [10.23957420290553]
We propose the Optimal Transport Flow Matching framework to achieve one-step, high-quality pansharpening.<n>The OTFM framework enables simulation-free training and single-step inference while maintaining strict adherence to pansharpening constraints.
arXiv Detail & Related papers (2025-03-19T08:10:49Z) - Stream-level flow matching with Gaussian processes [4.935875591615496]
Conditional flow matching (CFM) is a family of training algorithms for fitting continuous normalizing flows (CNFs)<n>We extend the CFM algorithm by defining conditional probability paths along streams'', instances of latent paths that connect data pairs of source and target.<n>We show that this generalization of the CFM can effectively reduce the variance in the estimated marginal vector field at a moderate computational cost.
arXiv Detail & Related papers (2024-09-30T15:47:22Z) - Consistency Flow Matching: Defining Straight Flows with Velocity Consistency [97.28511135503176]
We introduce Consistency Flow Matching (Consistency-FM), a novel FM method that explicitly enforces self-consistency in the velocity field.
Preliminary experiments demonstrate that our Consistency-FM significantly improves training efficiency by converging 4.4x faster than consistency models.
arXiv Detail & Related papers (2024-07-02T16:15:37Z) - Flow matching achieves almost minimax optimal convergence [50.38891696297888]
Flow matching (FM) has gained significant attention as a simulation-free generative model.
This paper discusses the convergence properties of FM for large sample size under the $p$-Wasserstein distance.
We establish that FM can achieve an almost minimax optimal convergence rate for $1 leq p leq 2$, presenting the first theoretical evidence that FM can reach convergence rates comparable to those of diffusion models.
arXiv Detail & Related papers (2024-05-31T14:54:51Z) - Precise Knowledge Transfer via Flow Matching [24.772381404849174]
We name this framework Knowledge Transfer with Flow Matching (FM-KT)
FM-KT can be integrated with a metric-based distillation method with any form (textite.g. vanilla KD, DKD, PKD and DIST)
We empirically validate the scalability and state-of-the-art performance of our proposed methods among relevant comparison approaches.
arXiv Detail & Related papers (2024-02-03T03:59:51Z) - Improving and generalizing flow-based generative models with minibatch
optimal transport [90.01613198337833]
We introduce the generalized conditional flow matching (CFM) technique for continuous normalizing flows (CNFs)
CFM features a stable regression objective like that used to train the flow in diffusion models but enjoys the efficient inference of deterministic flow models.
A variant of our objective is optimal transport CFM (OT-CFM), which creates simpler flows that are more stable to train and lead to faster inference.
arXiv Detail & Related papers (2023-02-01T14:47:17Z) - Efficient CDF Approximations for Normalizing Flows [64.60846767084877]
We build upon the diffeomorphic properties of normalizing flows to estimate the cumulative distribution function (CDF) over a closed region.
Our experiments on popular flow architectures and UCI datasets show a marked improvement in sample efficiency as compared to traditional estimators.
arXiv Detail & Related papers (2022-02-23T06:11:49Z) - Comparing Probability Distributions with Conditional Transport [63.11403041984197]
We propose conditional transport (CT) as a new divergence and approximate it with the amortized CT (ACT) cost.
ACT amortizes the computation of its conditional transport plans and comes with unbiased sample gradients that are straightforward to compute.
On a wide variety of benchmark datasets generative modeling, substituting the default statistical distance of an existing generative adversarial network with ACT is shown to consistently improve the performance.
arXiv Detail & Related papers (2020-12-28T05:14:22Z) - Learning Likelihoods with Conditional Normalizing Flows [54.60456010771409]
Conditional normalizing flows (CNFs) are efficient in sampling and inference.
We present a study of CNFs where the base density to output space mapping is conditioned on an input x, to model conditional densities p(y|x)
arXiv Detail & Related papers (2019-11-29T19:17:58Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.