論文の概要: Diversity dilemmas: uncovering gender and nationality biases in graduate
admissions across top North American computer science programs
- arxiv url: http://arxiv.org/abs/2302.00589v2
- Date: Tue, 29 Aug 2023 19:30:27 GMT
- ステータス: 処理完了
- システム内更新日: 2023-08-31 17:43:03.249832
- Title: Diversity dilemmas: uncovering gender and nationality biases in graduate
admissions across top North American computer science programs
- Title(参考訳): 多様性のジレンマ:北米のトップコンピュータサイエンスプログラムにおける大学院入学者のジェンダーと国籍バイアスを明らかにする
- Authors: Ghazal Kalhor, Tanin Zeraati, Behnam Bahrak
- Abstract要約: 入学プロセスにおいて,学生の性別や国籍が優先されているかを検討する。
研究グループへの入学には男女差は認められなかったが,学生の国籍にもとづく偏見がみられた。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Although different organizations have defined policies towards diversity in
academia, many argue that minorities are still disadvantaged in university
admissions due to biases. Extensive research has been conducted on detecting
partiality patterns in the academic community. However, in the last few
decades, limited research has focused on assessing gender and nationality
biases in graduate admission results of universities. In this study, we
collected a novel and comprehensive dataset containing information on
approximately 14,000 graduate students majoring in computer science (CS) at the
top 25 North American universities. We used statistical hypothesis tests to
determine whether there is a preference for students' gender and nationality in
the admission processes. In addition to partiality patterns, we discuss the
relationship between gender/nationality diversity and the scientific
achievements of research teams. Consistent with previous studies, our findings
show that there is no gender bias in the admission of graduate students to
research groups, but we observed bias based on students' nationality.
- Abstract(参考訳): 異なる組織は学界における多様性に対する政策を定義してきたが、少数派はいまだに偏見のために大学入学に不利であると主張する者も多い。
学術コミュニティにおける部分性パターンの検出に関する広範な研究が行われている。
しかし、過去数十年間、大学大学院進学結果における性別・国籍バイアスの評価に限定的な研究が集中してきた。
本研究では,北米の大学上位25校で,コンピュータサイエンス(CS)を専攻する約14,000人の大学院生に関する情報を包括的に収集した。
受験過程において,学生の性別や国籍を選好するかどうかを統計的仮説テストを用いて検討した。
偏りのパターンに加えて、男女・国籍の多様性と研究チームの科学的成果との関係についても論じる。
これまでの研究では,大学院生が研究グループに入学した場合,男女差は認められなかったが,学生の国籍にもとづく偏見が観察された。
関連論文リスト
- Beyond Binary Gender: Evaluating Gender-Inclusive Machine Translation with Ambiguous Attitude Words [85.48043537327258]
既存の機械翻訳の性別バイアス評価は主に男性と女性の性別に焦点を当てている。
本研究では,AmbGIMT (Gender-Inclusive Machine Translation with Ambiguous attitude words) のベンチマークを示す。
本研究では,感情的態度スコア(EAS)に基づく性別バイアス評価手法を提案する。
論文 参考訳(メタデータ) (2024-07-23T08:13:51Z) - Survey of Bias In Text-to-Image Generation: Definition, Evaluation, and Mitigation [47.770531682802314]
単純なプロンプトであっても、T2Iモデルは生成された画像に顕著な社会的偏見を示す可能性がある。
本研究は,T2I生成モデルにおけるバイアスに関する最初の広範な調査である。
これらの作業がどのようにしてバイアスの異なる側面を定義し、評価し、緩和するかについて議論する。
論文 参考訳(メタデータ) (2024-04-01T10:19:05Z) - A machine learning approach to predict university enrolment choices through students' high school background in Italy [42.57210316104905]
本稿では,イタリアの高校生の数学とイタリア語の習熟度が大学入学選択に及ぼす影響を考察する。
従来と同様の教育的選択や達成に対する性別差について検討した。
研究成果は、大学教育に関する学生の選択を形作る際に、学力、性別、高校の背景の複雑な相互作用を浮き彫りにした。
論文 参考訳(メタデータ) (2024-02-29T10:05:37Z) - Data-Driven Analysis of Gender Fairness in the Software Engineering
Academic Landscape [4.580653005421453]
本研究では,情報学(INF)およびソフトウェア工学(SE)イタリアのコミュニティにおける,学術的昇進におけるジェンダーバイアスの問題について検討する。
我々はまず,学界におけるジェンダーバイアスの問題がこれまでどのように対処されてきたかを評価するために文献レビューを実施している。
次に、イタリアの学術振興におけるジェンダーバイアスの分析に必要なINFとSEデータを収集・前処理するプロセスについて述べる。
実施した分析から,SEコミュニティが助教授への昇進のバイアスが高いこと,全教授への昇進のバイアスがINFコミュニティ全体と比較して小さいことを観察した。
論文 参考訳(メタデータ) (2023-09-20T12:04:56Z) - Bias or Diversity? Unraveling Fine-Grained Thematic Discrepancy in U.S.
News Headlines [63.52264764099532]
われわれは、2014年から2022年までの米国の主要メディアから、180万件のニュース記事の大規模なデータセットを使用している。
我々は、国内政治、経済問題、社会問題、外交の4つの主要なトピックに関連する、きめ細かいテーマの相違を定量化する。
以上の結果から,国内政治や社会問題においては,一定のメディア偏見が原因であることが示唆された。
論文 参考訳(メタデータ) (2023-03-28T03:31:37Z) - Award rate inequities in biomedical research [55.850540873687386]
著者らは、2010年から2022年の間にミシガン大学医学部から提案された14,263の生物医学研究提案を分析した。
人種・倫理と提案の受賞率には明確な関係がある。
黒人/アフリカ系アメリカ人とアジア系アメリカ人の研究者は、白人の研究者と比較して全ての応募カテゴリーで不利に見える。
論文 参考訳(メタデータ) (2022-06-14T14:05:39Z) - Towards Understanding Gender-Seniority Compound Bias in Natural Language
Generation [64.65911758042914]
本研究では,事前学習したニューラルジェネレーションモデルにおける性別バイアスの程度に,高齢者がどのような影響を及ぼすかを検討する。
以上の結果から, GPT-2は, 両領域において, 女性を中年, 男性を中年として考えることにより, 偏見を増幅することが示された。
以上の結果から, GPT-2を用いて構築したNLPアプリケーションは, プロの能力において女性に害を与える可能性が示唆された。
論文 参考訳(メタデータ) (2022-05-19T20:05:02Z) - A Survey on Gender Bias in Natural Language Processing [22.91475787277623]
自然言語処理における性別バイアスに関する304論文について調査する。
ジェンダーバイアスの検出と緩和に対するコントラストアプローチの比較を行った。
性別偏見の研究は、4つの中核的な限界に悩まされている。
論文 参考訳(メタデータ) (2021-12-28T14:54:18Z) - How diverse is the ACII community? Analysing gender, geographical and
business diversity of Affective Computing research [0.0]
ACIIは、感情コンピューティングに関する最新の研究を示す主要な国際フォーラムである。
我々は、性別、地理的な位置、学歴、研究センター、産業の比較で多様性を測定し、著者、基調講演者、オーガナイザの3つの異なるアクターについて検討する。
結果は、フィールドにおける限られた多様性、すべての研究されたファセット、そして他のAIカンファレンスと比較して、認識を高めます。
論文 参考訳(メタデータ) (2021-09-12T18:30:36Z) - Ethnic Diversity in Computer Science at a Large Public R1 Research
University [0.0]
大規模R1研究大学におけるマイノリティ学生の採用と留保のパターンについて検討した。
異なる人種・民族集団の学生は、一般大衆に認知される学生ほど大きくないことを示す。
論文 参考訳(メタデータ) (2020-04-28T21:50:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。