Analysis of Biomass Sustainability Indicators from a Machine Learning
Perspective
- URL: http://arxiv.org/abs/2302.00828v1
- Date: Thu, 2 Feb 2023 02:31:42 GMT
- Title: Analysis of Biomass Sustainability Indicators from a Machine Learning
Perspective
- Authors: Syeda Nyma Ferdous, Xin Li, Kamalakanta Sahoo, Richard Bergman
- Abstract summary: This study proposes a robust model for biomass sustainability prediction by analyzing sustainability indicators using machine learning models.
Ten machine learning models were analyzed to estimate three biomass sustainability indicators, namely soil erosion factor, soil conditioning index, and organic matter factor.
The results showed that Random Forest was the best performing model to assess sustainability indicators.
- Score: 4.129067364486898
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Plant biomass estimation is critical due to the variability of different
environmental factors and crop management practices associated with it. The
assessment is largely impacted by the accurate prediction of different
environmental sustainability indicators. A robust model to predict
sustainability indicators is a must for the biomass community. This study
proposes a robust model for biomass sustainability prediction by analyzing
sustainability indicators using machine learning models. The prospect of
ensemble learning was also investigated to analyze the regression problem. All
experiments were carried out on a crop residue data from the Ohio state. Ten
machine learning models, namely, linear regression, ridge regression,
multilayer perceptron, k-nearest neighbors, support vector machine, decision
tree, gradient boosting, random forest, stacking and voting, were analyzed to
estimate three biomass sustainability indicators, namely soil erosion factor,
soil conditioning index, and organic matter factor. The performance of the
model was assessed using cross-correlation (R2), root mean squared error and
mean absolute error metrics. The results showed that Random Forest was the best
performing model to assess sustainability indicators. The analyzed model can
now serve as a guide for assessing sustainability indicators in real time.
Related papers
- VegeDiff: Latent Diffusion Model for Geospatial Vegetation Forecasting [58.12667617617306]
We propose VegeDiff for the geospatial vegetation forecasting task.
VegeDiff is the first to employ a diffusion model to probabilistically capture the uncertainties in vegetation change processes.
By capturing the uncertainties in vegetation changes and modeling the complex influence of relevant variables, VegeDiff outperforms existing deterministic methods.
arXiv Detail & Related papers (2024-07-17T14:15:52Z) - Explainability of Sub-Field Level Crop Yield Prediction using Remote Sensing [6.65506917941232]
We focus on the task of crop yield prediction, specifically for soybean, wheat, and rapeseed crops in Argentina, Uruguay, and Germany.
Our goal is to develop and explain predictive models for these crops, using a large dataset of satellite images, additional data modalities, and crop yield maps.
For model explainability, we utilize feature attribution methods to quantify input feature contributions, identify critical growth stages, analyze yield variability at the field level, and explain less accurate predictions.
arXiv Detail & Related papers (2024-07-11T08:23:46Z) - ExioML: Eco-economic dataset for Machine Learning in Global Sectoral Sustainability [11.925553950065895]
This paper introduces ExioML, the first Machine Learning benchmark dataset designed for sustainability analysis.
A crucial greenhouse gas emission regression task was conducted to evaluate sectoral sustainability and demonstrate the usability of the dataset.
arXiv Detail & Related papers (2024-06-11T17:06:34Z) - GenBench: A Benchmarking Suite for Systematic Evaluation of Genomic Foundation Models [56.63218531256961]
We introduce GenBench, a benchmarking suite specifically tailored for evaluating the efficacy of Genomic Foundation Models.
GenBench offers a modular and expandable framework that encapsulates a variety of state-of-the-art methodologies.
We provide a nuanced analysis of the interplay between model architecture and dataset characteristics on task-specific performance.
arXiv Detail & Related papers (2024-06-01T08:01:05Z) - Benchmarking and Improving Bird's Eye View Perception Robustness in Autonomous Driving [55.93813178692077]
We present RoboBEV, an extensive benchmark suite designed to evaluate the resilience of BEV algorithms.
We assess 33 state-of-the-art BEV-based perception models spanning tasks like detection, map segmentation, depth estimation, and occupancy prediction.
Our experimental results also underline the efficacy of strategies like pre-training and depth-free BEV transformations in enhancing robustness against out-of-distribution data.
arXiv Detail & Related papers (2024-05-27T17:59:39Z) - Towards Machine Learning-based Fish Stock Assessment [0.0]
In this paper, we investigate the use of machine learning models to improve the estimation and forecast of relevant stock parameters.
We propose a hybrid model that combines classical statistical stock assessment models with supervised ML, specifically gradient boosted trees.
arXiv Detail & Related papers (2023-08-07T08:44:15Z) - Ecosystem-level Analysis of Deployed Machine Learning Reveals Homogeneous Outcomes [72.13373216644021]
We study the societal impact of machine learning by considering the collection of models that are deployed in a given context.
We find deployed machine learning is prone to systemic failure, meaning some users are exclusively misclassified by all models available.
These examples demonstrate ecosystem-level analysis has unique strengths for characterizing the societal impact of machine learning.
arXiv Detail & Related papers (2023-07-12T01:11:52Z) - A Comparative Study of Machine Learning Algorithms for Anomaly Detection
in Industrial Environments: Performance and Environmental Impact [62.997667081978825]
This study seeks to address the demands of high-performance machine learning models with environmental sustainability.
Traditional machine learning algorithms, such as Decision Trees and Random Forests, demonstrate robust efficiency and performance.
However, superior outcomes were obtained with optimised configurations, albeit with a commensurate increase in resource consumption.
arXiv Detail & Related papers (2023-07-01T15:18:00Z) - Fuzzy clustering for the within-season estimation of cotton phenology [0.0]
We propose a new approach for the within-season phenology estimation for cotton at the field level.
Our method is unsupervised to address the ever-present problem of sparse and scarce ground truth data.
In order to evaluate our models, we collected 1,285 crop growth ground observations in Orchomenos, Greece.
arXiv Detail & Related papers (2022-11-25T13:30:57Z) - End-to-end deep learning for directly estimating grape yield from
ground-based imagery [53.086864957064876]
This study demonstrates the application of proximal imaging combined with deep learning for yield estimation in vineyards.
Three model architectures were tested: object detection, CNN regression, and transformer models.
The study showed the applicability of proximal imaging and deep learning for prediction of grapevine yield on a large scale.
arXiv Detail & Related papers (2022-08-04T01:34:46Z) - Crop Yield Prediction Integrating Genotype and Weather Variables Using
Deep Learning [8.786816847837976]
We use historical performance records from Uniform Soybean Tests (UST) in North America spanning 13 years of data to build a Long Short Term Memory - Recurrent Neural Network based model to dissect and predict genotype response in multiple environments.
We deploy this deep learning framework as a 'hypotheses generation tool' to unravel GxExM relationships.
We envision broad applicability of this approach (via conducting sensitivity analysis and "what-if" scenarios) for soybean and other crop species under different climatic conditions.
arXiv Detail & Related papers (2020-06-24T16:20:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.