論文の概要: Predicting the Silent Majority on Graphs: Knowledge Transferable Graph
Neural Network
- arxiv url: http://arxiv.org/abs/2302.00873v2
- Date: Tue, 4 Apr 2023 08:50:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-04-05 17:58:28.111725
- Title: Predicting the Silent Majority on Graphs: Knowledge Transferable Graph
Neural Network
- Title(参考訳): グラフ上のサイレント多数予測:知識伝達型グラフニューラルネットワーク
- Authors: Wendong Bi, Bingbing Xu, Xiaoqian Sun, Li Xu, Huawei Shen, Xueqi Cheng
- Abstract要約: 声門ノード(声門少数派)とサイレントノード(サイレント多数派)からなるグラフ、すなわちVS-Graphは現実世界に広く存在している。
本稿では,メッセージパッシングと表現学習における分散シフトをモデル化した知識伝達可能なグラフニューラルネットワーク(KT-GNN)を提案する。
- 参考スコア(独自算出の注目度): 45.790140824712616
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Graphs consisting of vocal nodes ("the vocal minority") and silent nodes
("the silent majority"), namely VS-Graph, are ubiquitous in the real world. The
vocal nodes tend to have abundant features and labels. In contrast, silent
nodes only have incomplete features and rare labels, e.g., the description and
political tendency of politicians (vocal) are abundant while not for ordinary
people (silent) on the twitter's social network. Predicting the silent majority
remains a crucial yet challenging problem. However, most existing
message-passing based GNNs assume that all nodes belong to the same domain,
without considering the missing features and distribution-shift between
domains, leading to poor ability to deal with VS-Graph. To combat the above
challenges, we propose Knowledge Transferable Graph Neural Network (KT-GNN),
which models distribution shifts during message passing and representation
learning by transferring knowledge from vocal nodes to silent nodes.
Specifically, we design the domain-adapted "feature completion and message
passing mechanism" for node representation learning while preserving domain
difference. And a knowledge transferable classifier based on KL-divergence is
followed. Comprehensive experiments on real-world scenarios (i.e., company
financial risk assessment and political elections) demonstrate the superior
performance of our method. Our source code has been open sourced.
- Abstract(参考訳): 声門ノード(声門少数派)とサイレントノード(サイレント多数派)からなるグラフ、すなわちVS-Graphは現実世界に広く存在している。
声帯には豊富な特徴とラベルがある傾向がある。
対照的に、サイレントノードは不完全な特徴と稀なラベルしか持たず、例えば、政治家(声)の記述と政治的傾向は豊富であるが、Twitterのソーシャルネットワーク上の一般の人々(サイレント)には及ばない。
サイレントマジョリティの予測は、依然として極めて困難な問題である。
しかし、既存のメッセージパスベースのGNNの多くは、すべてのノードが、欠落した機能やドメイン間の分散シフトを考慮せずに、同じドメインに属していると仮定しているため、VS-Graphに対処する能力は貧弱である。
上記の課題に対処するために,音声ノードからサイレントノードへ知識を伝達することで,メッセージパッシングと表現学習における分散シフトをモデル化する知識伝達可能なグラフニューラルネットワーク(KT-GNN)を提案する。
具体的には、ドメイン差を保ちながらノード表現学習のためのドメイン適応型「機能補完とメッセージパッシング機構」を設計する。
そして、KL分割に基づく知識伝達可能な分類器に従う。
実世界のシナリオに関する総合的な実験(企業財務リスク評価と政治選挙)は,本手法の優れた性能を示す。
ソースコードがオープンソース化されました。
関連論文リスト
- SF-GNN: Self Filter for Message Lossless Propagation in Deep Graph Neural Network [38.669815079957566]
グラフニューラルネットワーク(GNN)は,グラフの伝播と集約によるグラフ構造情報の符号化を主目的とする。
等質グラフ、異質グラフ、知識グラフのようなより複雑なグラフなど、複数の種類のグラフの表現学習において優れた性能を発揮した。
深部GNNの性能劣化現象に対して,新しい視点を提案する。
論文 参考訳(メタデータ) (2024-07-03T02:40:39Z) - EntailE: Introducing Textual Entailment in Commonsense Knowledge Graph
Completion [54.12709176438264]
Commonsense knowledge graph(CSKG)は、名前付きエンティティ、短いフレーズ、イベントをノードとして表現するために自由形式のテキストを使用する。
現在の手法では意味的類似性を利用してグラフ密度を増大させるが、ノードとその関係のセマンティックな妥当性は未探索である。
そこで本研究では,CSKGノード間の暗黙的な包絡関係を見つけるために,テキストエンテーメントを導入し,同じ概念クラス内のサブグラフ接続ノードを効果的に密度化することを提案する。
論文 参考訳(メタデータ) (2024-02-15T02:27:23Z) - Degree-based stratification of nodes in Graph Neural Networks [66.17149106033126]
グラフニューラルネットワーク(GNN)アーキテクチャを変更して,各グループのノードに対して,重み行列を個別に学習する。
このシンプルな実装変更により、データセットとGNNメソッドのパフォーマンスが改善されているようだ。
論文 参考訳(メタデータ) (2023-12-16T14:09:23Z) - KMF: Knowledge-Aware Multi-Faceted Representation Learning for Zero-Shot
Node Classification [75.95647590619929]
Zero-Shot Node Classification (ZNC)は、グラフデータ分析において、新しく重要なタスクである。
ラベルセマンティクスの豊かさを向上する知識認識型多面的フレームワーク(KMF)を提案する。
ノード情報集約によるプロトタイプドリフトの問題を軽減するために,新しい幾何学的制約を開発した。
論文 参考訳(メタデータ) (2023-08-15T02:38:08Z) - Evidential Temporal-aware Graph-based Social Event Detection via
Dempster-Shafer Theory [76.4580340399321]
ETGNN(Evidential Temporal-aware Graph Neural Network)を提案する。
ノードがテキストであり、エッジがそれぞれ複数の共有要素によって決定されるビュー固有グラフを構築する。
ビュー固有の不確実性を考慮すると、すべてのビューの表現は、明らかなディープラーニング(EDL)ニューラルネットワークを介してマス関数に変換される。
論文 参考訳(メタデータ) (2022-05-24T16:22:40Z) - Natural Graph Networks [80.77570956520482]
より一般的な自然性の概念がグラフネットワークを適切に定義するのに十分であることを示す。
グローバルおよびローカルな自然グラフネットワークを定義し、後者は従来のメッセージパッシンググラフニューラルネットワークと同じくらいスケーラブルである。
論文 参考訳(メタデータ) (2020-07-16T14:19:06Z) - Locally Private Graph Neural Networks [12.473486843211573]
ノードデータプライバシ(ノードデータプライバシ)の問題として,グラフノードが機密性の高いデータをプライベートに保持する可能性について検討する。
我々は、正式なプライバシー保証を備えたプライバシー保護アーキテクチャに依存しないGNN学習アルゴリズムを開発した。
実世界のデータセット上で行った実験は、我々の手法が低プライバシー損失で満足度の高い精度を維持することができることを示した。
論文 参考訳(メタデータ) (2020-06-09T22:36:06Z) - Improving Expressivity of Graph Neural Networks [0.0]
一般的なGNNよりも表現力の高いグラフニューラルネットワークを提案する。
我々は、指数関数的に離れたノードから情報を集約する注目ウィンドウを拡大したグラフアテンションネットワークを使用する。
論文 参考訳(メタデータ) (2020-04-08T17:24:58Z) - Feature-Attention Graph Convolutional Networks for Noise Resilient
Learning [20.059242373860013]
本稿では,ノイズの多いノード内容のネットワークを扱うための特徴注意グラフ畳み込み学習フレームワークであるFA-GCNを提案する。
実験と検証、すなわち異なるノイズレベルは、FA-GCNがノイズのないネットワークとノイズのないネットワークの両方で最先端の手法よりも優れた性能を発揮することを示した。
論文 参考訳(メタデータ) (2019-12-26T02:51:55Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。