論文の概要: Uncertainty in Fairness Assessment: Maintaining Stable Conclusions
Despite Fluctuations
- arxiv url: http://arxiv.org/abs/2302.01079v1
- Date: Thu, 2 Feb 2023 13:10:31 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-03 13:52:10.337319
- Title: Uncertainty in Fairness Assessment: Maintaining Stable Conclusions
Despite Fluctuations
- Title(参考訳): フェアネスアセスメントの不確かさ:変動にもかかわらず安定したコンクルージョンを維持する
- Authors: Ainhize Barrainkua, Paula Gordaliza, Jose A. Lozano, Novi Quadrianto
- Abstract要約: 本研究では,任意の基準の組み合わせの後方分布を導出するために,ベータ・バイノミカルアプローチを一般化する不確実性事項(UM)フレームワークを提案する。
ベイズ法により更新された多項分布を用いて,各人口集団の混同行列をモデル化することを提案する。
- 参考スコア(独自算出の注目度): 4.926395463398194
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Several recent works encourage the use of a Bayesian framework when assessing
performance and fairness metrics of a classification algorithm in a supervised
setting. We propose the Uncertainty Matters (UM) framework that generalizes a
Beta-Binomial approach to derive the posterior distribution of any criteria
combination, allowing stable performance assessment in a bias-aware setting.We
suggest modeling the confusion matrix of each demographic group using a
Multinomial distribution updated through a Bayesian procedure. We extend UM to
be applicable under the popular K-fold cross-validation procedure. Experiments
highlight the benefits of UM over classical evaluation frameworks regarding
informativeness and stability.
- Abstract(参考訳): 最近のいくつかの研究は、教師付き設定における分類アルゴリズムのパフォーマンスと公平性指標を評価する際にベイズフレームワークの使用を奨励している。
本研究では,任意の基準の組み合わせの後方分布を一般化する不確実性物質(UM)フレームワークを提案し,バイアスを考慮した環境下での安定な性能評価を実現する。ベイズ法により更新された多項分布を用いて,各階層群の混乱行列をモデル化することを提案する。
UMをK-foldクロスバリデーション法で適用できるように拡張する。
実験は、情報性と安定性に関する古典的な評価フレームワークに対するumの利点を強調している。
関連論文リスト
- Top-K Pairwise Ranking: Bridging the Gap Among Ranking-Based Measures for Multi-Label Classification [120.37051160567277]
本稿では,Top-K Pairwise Ranking(TKPR)という新しい尺度を提案する。
一連の分析により、TKPRは既存のランキングベースの尺度と互換性があることが示されている。
一方,データ依存縮約法という新しい手法に基づいて,提案手法の急激な一般化を確立する。
論文 参考訳(メタデータ) (2024-07-09T09:36:37Z) - Probabilistic Conformal Prediction with Approximate Conditional Validity [81.30551968980143]
本研究では,共形手法の柔軟性と条件分布の推定を組み合わせ,予測セットを生成する手法を開発した。
我々の手法は、条件付きカバレッジの観点から既存の手法よりも一貫して優れています。
論文 参考訳(メタデータ) (2024-07-01T20:44:48Z) - Likelihood Ratio Confidence Sets for Sequential Decision Making [51.66638486226482]
確率に基づく推論の原理を再検討し、確率比を用いて妥当な信頼シーケンスを構築することを提案する。
本手法は, 精度の高い問題に特に適している。
提案手法は,オンライン凸最適化への接続に光を当てることにより,推定器の最適シーケンスを確実に選択する方法を示す。
論文 参考訳(メタデータ) (2023-11-08T00:10:21Z) - Statistical Inference for Fairness Auditing [4.318555434063274]
我々は、このタスクを複数の仮説テストの観点から「フェアネス監査」とみなしている。
ブートストラップを用いて,グループ間のパフォーマンス格差を同時にバインドする方法を示す。
本手法は,モデルアンダーパフォーマンスの影響を受けるサブポピュレーションのフラグ付けや,モデルが適切に機能するサブポピュレーションの認証に利用できる。
論文 参考訳(メタデータ) (2023-05-05T17:54:22Z) - Bayesian Quantification with Black-Box Estimators [1.599072005190786]
調整された分類と数、ブラックボックスシフト推定器、不変比推定器などのアプローチでは、クラス分布を推定し、弱い仮定の下で保証を得る補助的(および潜在的に偏りのある)ブラックボックス分類器を用いる。
これら全てのアルゴリズムが特定のベイズ連鎖モデルにおける推論と密接に関連していることを示し、仮定された基底構造生成過程を近似する。
次に,導入モデルに対する効率的なマルコフ・モンテカルロサンプリング手法について検討し,大容量データ限界における一貫性の保証を示す。
論文 参考訳(メタデータ) (2023-02-17T22:10:04Z) - Trusted Multi-View Classification with Dynamic Evidential Fusion [73.35990456162745]
信頼型マルチビュー分類(TMC)と呼ばれる新しいマルチビュー分類アルゴリズムを提案する。
TMCは、様々な視点をエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
理論的および実験的結果は、精度、堅牢性、信頼性において提案されたモデルの有効性を検証した。
論文 参考訳(メタデータ) (2022-04-25T03:48:49Z) - When in Doubt: Improving Classification Performance with Alternating
Normalization [57.39356691967766]
分類のための非パラメトリック後処理ステップである交互正規化(CAN)を用いた分類を導入する。
CANは、予測されたクラス確率分布を再調整することで、挑戦的な例の分類精度を向上させる。
多様な分類課題にまたがってその効果を実証的に示す。
論文 参考訳(メタデータ) (2021-09-28T02:55:42Z) - Uncertainty-Aware Abstractive Summarization [3.1423034006764965]
ベイズ深層学習に基づく要約手法を提案する。
BARTとPEGの変動等価性は、複数のベンチマークデータセットで決定論的に比較した場合よりも優れていることを示す。
信頼性の高い不確実性尺度を持つことで、高い不確実性の生成された要約をフィルタリングすることにより、エンドユーザのエクスペリエンスを向上させることができる。
論文 参考訳(メタデータ) (2021-05-21T06:36:40Z) - Trusted Multi-View Classification [76.73585034192894]
本稿では,信頼された多視点分類と呼ばれる新しい多視点分類手法を提案する。
さまざまなビューをエビデンスレベルで動的に統合することで、マルチビュー学習のための新しいパラダイムを提供する。
提案アルゴリズムは,分類信頼性とロバスト性の両方を促進するために,複数のビューを併用する。
論文 参考訳(メタデータ) (2021-02-03T13:30:26Z) - Fairness with Overlapping Groups [15.154984899546333]
標準的なゴールは、複数の重なり合うグループ間での公平度メトリクスの平等を保証することである。
本稿では、確率論的人口分析を用いて、この標準公正分類問題を再考する。
提案手法は,既存のグループフェア分類手法を統一し,様々な非分解性性能指標と公正度尺度の拡張を可能にする。
論文 参考訳(メタデータ) (2020-06-24T05:01:10Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。