論文の概要: Noncommutative $C^*$-algebra Net: Learning Neural Networks with Powerful Product Structure in $C^*$-algebra
- arxiv url: http://arxiv.org/abs/2302.01191v2
- Date: Sat, 6 Jul 2024 04:40:14 GMT
- ステータス: 処理完了
- システム内更新日: 2024-07-10 05:42:28.649976
- Title: Noncommutative $C^*$-algebra Net: Learning Neural Networks with Powerful Product Structure in $C^*$-algebra
- Title(参考訳): 非可換$C^*$-代数ネット:$C^*$-代数における強力な積構造を持つニューラルネットワークの学習
- Authors: Ryuichiro Hataya, Yuka Hashimoto,
- Abstract要約: この非可換構造はニューラルネットワークの学習において強力な効果をもたらすことを示す。
私たちのフレームワークは、複数の関連するニューラルネットワークを相互に同時に学習したり、同変の特徴を学習するなど、幅広い用途を持っています。
- 参考スコア(独自算出の注目度): 5.359060261460183
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose a new generalization of neural network parameter spaces with noncommutative $C^*$-algebra, which possesses a rich noncommutative structure of products. We show that this noncommutative structure induces powerful effects in learning neural networks. Our framework has a wide range of applications, such as learning multiple related neural networks simultaneously with interactions and learning equivariant features with respect to group actions. Numerical experiments illustrate the validity of our framework and its potential power.
- Abstract(参考訳): 積の豊富な非可換構造を持つ非可換$C^*$-代数を持つニューラルネットワークパラメータ空間の新しい一般化を提案する。
この非可換構造はニューラルネットワークの学習において強力な効果をもたらすことを示す。
我々のフレームワークは、相互作用と同時に複数の関連するニューラルネットワークを学習したり、グループアクションに関して同種の特徴を学習したりするなど、幅広い用途を持っている。
数値実験は、我々の枠組みの妥当性とその潜在能力を示す。
関連論文リスト
- Activations Through Extensions: A Framework To Boost Performance Of Neural Networks [6.302159507265204]
活性化関数はニューラルネットワークの非線形性であり、入力と出力の間の複雑なマッピングを学習することができる。
本稿では,アクティベーション関数に関するいくつかの研究を統合するフレームワークを提案し,これらの成果を理論的に説明する。
論文 参考訳(メタデータ) (2024-08-07T07:36:49Z) - Coding schemes in neural networks learning classification tasks [52.22978725954347]
完全接続型広義ニューラルネットワーク学習タスクについて検討する。
ネットワークが強力なデータ依存機能を取得することを示す。
驚くべきことに、内部表現の性質は神経の非線形性に大きく依存する。
論文 参考訳(メタデータ) (2024-06-24T14:50:05Z) - Graph Neural Networks for Learning Equivariant Representations of Neural Networks [55.04145324152541]
本稿では,ニューラルネットワークをパラメータの計算グラフとして表現することを提案する。
我々のアプローチは、ニューラルネットワークグラフを多種多様なアーキテクチャでエンコードする単一モデルを可能にする。
本稿では,暗黙的ニューラル表現の分類や編集など,幅広いタスクにおける本手法の有効性を示す。
論文 参考訳(メタデータ) (2024-03-18T18:01:01Z) - Geometry of Polynomial Neural Networks [3.498371632913735]
単項活性化機能を持つニューラルネットワーク(PNN)の表現性と学習過程について検討した。
これらの理論的結果は実験を伴う。
論文 参考訳(メタデータ) (2024-02-01T19:06:06Z) - Activity Sparsity Complements Weight Sparsity for Efficient RNN
Inference [2.0822643340897273]
本研究では、繰り返しニューラルネットワークモデルにおいて、活動空間がパラメータ空間と乗算的に構成可能であることを示す。
私たちはPenn Treebank言語モデリングタスクで60ドル以下の難易度を維持しながら、最大20ドルまで計算の削減を実現しています。
論文 参考訳(メタデータ) (2023-11-13T08:18:44Z) - Permutation Equivariant Neural Functionals [92.0667671999604]
この研究は、他のニューラルネットワークの重みや勾配を処理できるニューラルネットワークの設計を研究する。
隠れた層状ニューロンには固有の順序がないため, 深いフィードフォワードネットワークの重みに生じる置換対称性に着目する。
実験の結果, 置換同変ニューラル関数は多種多様なタスクに対して有効であることがわかった。
論文 参考訳(メタデータ) (2023-02-27T18:52:38Z) - Extrapolation and Spectral Bias of Neural Nets with Hadamard Product: a
Polynomial Net Study [55.12108376616355]
NTKの研究は典型的なニューラルネットワークアーキテクチャに特化しているが、アダマール製品(NNs-Hp)を用いたニューラルネットワークには不完全である。
本研究では,ニューラルネットワークの特別なクラスであるNNs-Hpに対する有限幅Kの定式化を導出する。
我々は,カーネル回帰予測器と関連するNTKとの等価性を証明し,NTKの適用範囲を拡大する。
論文 参考訳(メタデータ) (2022-09-16T06:36:06Z) - Learning from Randomly Initialized Neural Network Features [24.75062551820944]
ランダムニューラルネットワークが期待できる特徴抽出器として優れているという驚くべき結果を示す。
これらのランダムな特徴は、本質的に無限次元であるニューラルネットワーク優先カーネル(NNPK)と呼ばれるものの有限サンプル化に対応する。
論文 参考訳(メタデータ) (2022-02-13T23:35:11Z) - Optimal Approximation with Sparse Neural Networks and Applications [0.0]
深い疎結合ニューラルネットワークを用いて、関数クラスの複雑性を$L(mathbb Rd)$で測定する。
また、ニューラルネットワークを誘導する関数の可算コレクションである表現システムについても紹介する。
次に、レート歪曲理論とウェッジレット構成を用いて、$beta$マンガ的関数と呼ばれるクラスの複雑性を分析する。
論文 参考訳(メタデータ) (2021-08-14T05:14:13Z) - Stability of Algebraic Neural Networks to Small Perturbations [179.55535781816343]
Algebraic Neural Network (AlgNN) は、代数的信号モデルと関連する各層のカスケードで構成されている。
畳み込みという形式的な概念を用いるアーキテクチャは、シフト演算子の特定の選択を超えて、いかに安定であるかを示す。
論文 参考訳(メタデータ) (2020-10-22T09:10:16Z) - Deep Polynomial Neural Networks [77.70761658507507]
$Pi$Netsは拡張に基づいた関数近似の新しいクラスである。
$Pi$Netsは、画像生成、顔検証、および3Dメッシュ表現学習という3つの困難なタスクで、最先端の結果を生成する。
論文 参考訳(メタデータ) (2020-06-20T16:23:32Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。