Fault-Tolerant Connection of Error-Corrected Qubits with Noisy Links
- URL: http://arxiv.org/abs/2302.01296v1
- Date: Thu, 2 Feb 2023 18:22:17 GMT
- Title: Fault-Tolerant Connection of Error-Corrected Qubits with Noisy Links
- Authors: Joshua Ramette, Josiah Sinclair, Nikolas P. Breuckmann, and Vladan
Vuleti\'c
- Abstract summary: We show that distinct surface code patches can be connected in a fault-tolerant manner.
We quantify the combined effect of errors across the interface and bulk.
- Score: 3.6748639131154315
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: One of the most promising routes towards scalable quantum computing is a
modular approach. We show that distinct surface code patches can be connected
in a fault-tolerant manner even in the presence of substantial noise along
their connecting interface. We quantify analytically and numerically the
combined effect of errors across the interface and bulk. We show that the
system can tolerate 14 times higher noise at the interface compared to the
bulk, with only a small effect on the code's threshold and sub-threshold
behavior, reaching threshold with $\sim 1 \%$ bulk errors and $\sim 10 \%$
interface errors. This implies that fault-tolerant scaling of error-corrected
modular devices is within reach using existing technology.
Related papers
- Optimized noise-resilient surface code teleportation interfaces [1.301995053989386]
We show that surface codes remain fault tolerant despite substantially elevated interface error rates.
We compare three strategies -- direct noisy links, gate teleportation, and a CAT-state gadget -- for both rotated and unrotated surface codes.
arXiv Detail & Related papers (2025-03-06T21:00:28Z) - Understanding Side-Channel Vulnerabilities in Superconducting Qubit Readout Architectures [0.8999666725996978]
We show that readout crosstalk can introduce vulnerabilities in a system being shared among multiple users.
These vulnerabilities are directly related to correlated errors due to readout crosstalk.
arXiv Detail & Related papers (2024-05-14T21:03:14Z) - Fast Flux-Activated Leakage Reduction for Superconducting Quantum
Circuits [84.60542868688235]
leakage out of the computational subspace arising from the multi-level structure of qubit implementations.
We present a resource-efficient universal leakage reduction unit for superconducting qubits using parametric flux modulation.
We demonstrate that using the leakage reduction unit in repeated weight-two stabilizer measurements reduces the total number of detected errors in a scalable fashion.
arXiv Detail & Related papers (2023-09-13T16:21:32Z) - Demonstrating a long-coherence dual-rail erasure qubit using tunable transmons [59.63080344946083]
We show that a "dual-rail qubit" consisting of a pair of resonantly coupled transmons can form a highly coherent erasure qubit.
We demonstrate mid-circuit detection of erasure errors while introducing $ 0.1%$ dephasing error per check.
This work establishes transmon-based dual-rail qubits as an attractive building block for hardware-efficient quantum error correction.
arXiv Detail & Related papers (2023-07-17T18:00:01Z) - A framework of partial error correction for intermediate-scale quantum
computers [0.7046417074932257]
We show that brick-layered circuits display on average slower concentration to the "useless" uniform distribution.
We find that this advantage only comes when the number of error-corrected qubits passes a specified threshold.
arXiv Detail & Related papers (2023-06-27T15:00:57Z) - Hardware optimized parity check gates for superconducting surface codes [0.0]
Error correcting codes use multi-qubit measurements to realize fault-tolerant quantum logic steps.
We analyze an unconventional surface code based on multi-body interactions between superconducting transmon qubits.
Despite the multi-body effects that underpin this approach, our estimates of logical faults suggest that this design can be at least as robust to realistic noise as conventional designs.
arXiv Detail & Related papers (2022-11-11T18:00:30Z) - Erasure qubits: Overcoming the $T_1$ limit in superconducting circuits [105.54048699217668]
amplitude damping time, $T_phi$, has long stood as the major factor limiting quantum fidelity in superconducting circuits.
We propose a scheme for overcoming the conventional $T_phi$ limit on fidelity by designing qubits in a way that amplitude damping errors can be detected and converted into erasure errors.
arXiv Detail & Related papers (2022-08-10T17:39:21Z) - Measuring NISQ Gate-Based Qubit Stability Using a 1+1 Field Theory and
Cycle Benchmarking [50.8020641352841]
We study coherent errors on a quantum hardware platform using a transverse field Ising model Hamiltonian as a sample user application.
We identify inter-day and intra-day qubit calibration drift and the impacts of quantum circuit placement on groups of qubits in different physical locations on the processor.
This paper also discusses how these measurements can provide a better understanding of these types of errors and how they may improve efforts to validate the accuracy of quantum computations.
arXiv Detail & Related papers (2022-01-08T23:12:55Z) - Scalable Method for Eliminating Residual $ZZ$ Interaction between
Superconducting Qubits [14.178204625914194]
We show a practically approach for complete cancellation of residual $ZZ$ interaction between fixed-frequency transmon qubits.
We verify the cancellation performance by measuring vanishing two-qubit entangling phases and $ZZ$ correlations.
Our method allows independent addressability of each qubit-qubit connection, and is applicable to both nontunable and tunable couplers.
arXiv Detail & Related papers (2021-11-26T02:04:49Z) - Fault-tolerant parity readout on a shuttling-based trapped-ion quantum
computer [64.47265213752996]
We experimentally demonstrate a fault-tolerant weight-4 parity check measurement scheme.
We achieve a flag-conditioned parity measurement single-shot fidelity of 93.2(2)%.
The scheme is an essential building block in a broad class of stabilizer quantum error correction protocols.
arXiv Detail & Related papers (2021-07-13T20:08:04Z) - Crosstalk Suppression for Fault-tolerant Quantum Error Correction with
Trapped Ions [62.997667081978825]
We present a study of crosstalk errors in a quantum-computing architecture based on a single string of ions confined by a radio-frequency trap, and manipulated by individually-addressed laser beams.
This type of errors affects spectator qubits that, ideally, should remain unaltered during the application of single- and two-qubit quantum gates addressed at a different set of active qubits.
We microscopically model crosstalk errors from first principles and present a detailed study showing the importance of using a coherent vs incoherent error modelling and, moreover, discuss strategies to actively suppress this crosstalk at the gate level.
arXiv Detail & Related papers (2020-12-21T14:20:40Z) - Fault-tolerant qubit from a constant number of components [1.0499611180329804]
Gate error rates in multiple technologies now below the threshold required for fault-tolerant quantum computation.
We propose a fault-tolerant quantum computing scheme that can nonetheless be assembled from a small number of experimental components.
arXiv Detail & Related papers (2020-11-16T19:01:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.