Generating Dispatching Rules for the Interrupting Swap-Allowed Blocking
Job Shop Problem Using Graph Neural Network and Reinforcement Learning
- URL: http://arxiv.org/abs/2302.02506v2
- Date: Thu, 28 Sep 2023 21:21:48 GMT
- Title: Generating Dispatching Rules for the Interrupting Swap-Allowed Blocking
Job Shop Problem Using Graph Neural Network and Reinforcement Learning
- Authors: Vivian W.H. Wong, Sang Hun Kim, Junyoung Park, Jinkyoo Park, Kincho H.
Law
- Abstract summary: The interrupting swap-allowed blocking job shop problem (ISBJSSP) is able to model many manufacturing planning and logistics applications realistically.
We introduce a dynamic disjunctive graph formulation characterized by nodes and edges subjected to continuous deletions and additions.
A simulator is developed to simulate interruption, swapping, and blocking in the ISBJSSP setting.
- Score: 21.021840570685264
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The interrupting swap-allowed blocking job shop problem (ISBJSSP) is a
complex scheduling problem that is able to model many manufacturing planning
and logistics applications realistically by addressing both the lack of storage
capacity and unforeseen production interruptions. Subjected to random
disruptions due to machine malfunction or maintenance, industry production
settings often choose to adopt dispatching rules to enable adaptive, real-time
re-scheduling, rather than traditional methods that require costly
re-computation on the new configuration every time the problem condition
changes dynamically. To generate dispatching rules for the ISBJSSP problem, we
introduce a dynamic disjunctive graph formulation characterized by nodes and
edges subjected to continuous deletions and additions. This formulation enables
the training of an adaptive scheduler utilizing graph neural networks and
reinforcement learning. Furthermore, a simulator is developed to simulate
interruption, swapping, and blocking in the ISBJSSP setting. Employing a set of
reported benchmark instances, we conduct a detailed experimental study on
ISBJSSP instances with a range of machine shutdown probabilities to show that
the scheduling policies generated can outperform or are at least as competitive
as existing dispatching rules with predetermined priority. This study shows
that the ISBJSSP, which requires real-time adaptive solutions, can be scheduled
efficiently with the proposed method when production interruptions occur with
random machine shutdowns.
Related papers
- Automated Conversion of Static to Dynamic Scheduler via Natural Language [3.4748713192043876]
We propose a Retrieval-Augmented Generation (RAG) based LLM model to automate the process of implementing constraints for Dynamic Scheduling (RAGDyS)
Our framework aims to minimize technical complexities related to mathematical modelling and computational workload for end-users.
arXiv Detail & Related papers (2024-05-08T04:07:38Z) - Intent-Aware DRL-Based Uplink Dynamic Scheduler for 5G-NR [30.146175299047325]
We investigate the problem of supporting Industrial Internet of Things user equipment (IIoT UEs) with intent (i.e., requested quality of service (QoS)) and random traffic arrival.
A deep reinforcement learning (DRL) based centralized dynamic scheduler for time-frequency resources is proposed to learn how to schedule the available communication resources.
arXiv Detail & Related papers (2024-03-27T08:57:15Z) - Constant-time Motion Planning with Anytime Refinement for Manipulation [17.543746580669662]
We propose an anytime refinement approach that works in combination with constant-time motion planners (CTMP) algorithms.
Our proposed framework, as it operates as a constant time algorithm, rapidly generates an initial solution within a user-defined time threshold.
functioning as an anytime algorithm, it iteratively refines the solution's quality within the allocated time budget.
arXiv Detail & Related papers (2023-11-01T20:40:10Z) - Edge Generation Scheduling for DAG Tasks Using Deep Reinforcement
Learning [2.365237699556817]
Directed acyclic graph (DAG) tasks are currently adopted in the real-time domain to model complex applications.
We propose a new DAG scheduling framework that attempts to minimize the DAG width by iteratively generating edges.
We evaluate the effectiveness of the proposed algorithm by comparing it with state-of-the-art DAG schedulings and an optimal mixed-integer linear programming baseline.
arXiv Detail & Related papers (2023-08-28T15:19:18Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
The dynamic scheduling of ultra-reliable and low-latency traffic (URLLC) in the uplink can significantly enhance the efficiency of coexisting services.
The main challenge is posed by the uncertainty in the process of URLLC packet generation.
We introduce a novel scheduler for URLLC packets that provides formal guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor.
arXiv Detail & Related papers (2023-02-15T14:09:55Z) - Scheduling Inference Workloads on Distributed Edge Clusters with
Reinforcement Learning [11.007816552466952]
This paper focuses on the problem of scheduling inference queries on Deep Neural Networks in edge networks at short timescales.
By means of simulations, we analyze several policies in the realistic network settings and workloads of a large ISP.
We design ASET, a Reinforcement Learning based scheduling algorithm able to adapt its decisions according to the system conditions.
arXiv Detail & Related papers (2023-01-31T13:23:34Z) - Learning Robust Policy against Disturbance in Transition Dynamics via
State-Conservative Policy Optimization [63.75188254377202]
Deep reinforcement learning algorithms can perform poorly in real-world tasks due to discrepancy between source and target environments.
We propose a novel model-free actor-critic algorithm to learn robust policies without modeling the disturbance in advance.
Experiments in several robot control tasks demonstrate that SCPO learns robust policies against the disturbance in transition dynamics.
arXiv Detail & Related papers (2021-12-20T13:13:05Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Adaptive Subcarrier, Parameter, and Power Allocation for Partitioned
Edge Learning Over Broadband Channels [69.18343801164741]
partitioned edge learning (PARTEL) implements parameter-server training, a well known distributed learning method, in wireless network.
We consider the case of deep neural network (DNN) models which can be trained using PARTEL by introducing some auxiliary variables.
arXiv Detail & Related papers (2020-10-08T15:27:50Z) - Combining Deep Learning and Optimization for Security-Constrained
Optimal Power Flow [94.24763814458686]
Security-constrained optimal power flow (SCOPF) is fundamental in power systems.
Modeling of APR within the SCOPF problem results in complex large-scale mixed-integer programs.
This paper proposes a novel approach that combines deep learning and robust optimization techniques.
arXiv Detail & Related papers (2020-07-14T12:38:21Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.