Intent-Aware DRL-Based Uplink Dynamic Scheduler for 5G-NR
- URL: http://arxiv.org/abs/2403.18364v1
- Date: Wed, 27 Mar 2024 08:57:15 GMT
- Title: Intent-Aware DRL-Based Uplink Dynamic Scheduler for 5G-NR
- Authors: Salwa Mostafa, Mateus P. Mota, Alvaro Valcarce, Mehdi Bennis,
- Abstract summary: We investigate the problem of supporting Industrial Internet of Things user equipment (IIoT UEs) with intent (i.e., requested quality of service (QoS)) and random traffic arrival.
A deep reinforcement learning (DRL) based centralized dynamic scheduler for time-frequency resources is proposed to learn how to schedule the available communication resources.
- Score: 30.146175299047325
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We investigate the problem of supporting Industrial Internet of Things user equipment (IIoT UEs) with intent (i.e., requested quality of service (QoS)) and random traffic arrival. A deep reinforcement learning (DRL) based centralized dynamic scheduler for time-frequency resources is proposed to learn how to schedule the available communication resources among the IIoT UEs. The proposed scheduler leverages an RL framework to adapt to the dynamic changes in the wireless communication system and traffic arrivals. Moreover, a graph-based reduction scheme is proposed to reduce the state and action space of the RL framework to allow fast convergence and a better learning strategy. Simulation results demonstrate the effectiveness of the proposed intelligent scheduler in guaranteeing the expressed intent of IIoT UEs compared to several traditional scheduling schemes, such as round-robin, semi-static, and heuristic approaches. The proposed scheduler also outperforms the contention-free and contention-based schemes in maximizing the number of successfully computed tasks.
Related papers
- Event-Triggered Reinforcement Learning Based Joint Resource Allocation for Ultra-Reliable Low-Latency V2X Communications [10.914558012458425]
6G-enabled vehicular networks face the challenge ensuring low-latency communication (URLLC) for delivering safety-critical information in a timely manner.
Traditional resource allocation schemes for vehicle-to-everything (V2X) communication systems rely on traditional decoding-based algorithms.
arXiv Detail & Related papers (2024-07-18T23:55:07Z) - Intelligent Hybrid Resource Allocation in MEC-assisted RAN Slicing Network [72.2456220035229]
We aim to maximize the SSR for heterogeneous service demands in the cooperative MEC-assisted RAN slicing system.
We propose a recurrent graph reinforcement learning (RGRL) algorithm to intelligently learn the optimal hybrid RA policy.
arXiv Detail & Related papers (2024-05-02T01:36:13Z) - Dynamic Scheduling for Federated Edge Learning with Streaming Data [56.91063444859008]
We consider a Federated Edge Learning (FEEL) system where training data are randomly generated over time at a set of distributed edge devices with long-term energy constraints.
Due to limited communication resources and latency requirements, only a subset of devices is scheduled for participating in the local training process in every iteration.
arXiv Detail & Related papers (2023-05-02T07:41:16Z) - Guaranteed Dynamic Scheduling of Ultra-Reliable Low-Latency Traffic via
Conformal Prediction [72.59079526765487]
The dynamic scheduling of ultra-reliable and low-latency traffic (URLLC) in the uplink can significantly enhance the efficiency of coexisting services.
The main challenge is posed by the uncertainty in the process of URLLC packet generation.
We introduce a novel scheduler for URLLC packets that provides formal guarantees on reliability and latency irrespective of the quality of the URLLC traffic predictor.
arXiv Detail & Related papers (2023-02-15T14:09:55Z) - Scheduling and Aggregation Design for Asynchronous Federated Learning
over Wireless Networks [56.91063444859008]
Federated Learning (FL) is a collaborative machine learning framework that combines on-device training and server-based aggregation.
We propose an asynchronous FL design with periodic aggregation to tackle the straggler issue in FL systems.
We show that an age-aware'' aggregation weighting design can significantly improve the learning performance in an asynchronous FL setting.
arXiv Detail & Related papers (2022-12-14T17:33:01Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Better than the Best: Gradient-based Improper Reinforcement Learning for
Network Scheduling [60.48359567964899]
We consider the problem of scheduling in constrained queueing networks with a view to minimizing packet delay.
We use a policy gradient based reinforcement learning algorithm that produces a scheduler that performs better than the available atomic policies.
arXiv Detail & Related papers (2021-05-01T10:18:34Z) - Smart Scheduling based on Deep Reinforcement Learning for Cellular
Networks [18.04856086228028]
We propose a smart scheduling scheme based on deep reinforcement learning (DRL)
We provide implementation-friend designs, i.e., a scalable neural network design for the agent and a virtual environment training framework.
We show that the DRL-based smart scheduling outperforms the conventional scheduling method and can be adopted in practical systems.
arXiv Detail & Related papers (2021-03-22T02:09:16Z) - Deep Reinforcement Learning for Resource Constrained Multiclass
Scheduling in Wireless Networks [0.0]
In our setup, the available limited bandwidth resources are allocated in order to serve randomly arriving service demands.
We propose a distributional Deep Deterministic Policy Gradient (DDPG) algorithm combined with Deep Sets to tackle the problem.
Our proposed algorithm is tested on both synthetic and real data, showing consistent gains against state-of-the-art conventional methods.
arXiv Detail & Related papers (2020-11-27T09:49:38Z) - Deep-Reinforcement-Learning-Based Scheduling with Contiguous Resource
Allocation for Next-Generation Cellular Systems [4.227387975627387]
We propose a novel scheduling algorithm with contiguous frequency-domain resource allocation (FDRA) based on deep reinforcement learning (DRL)
The proposed DRL-based scheduling algorithm outperforms other representative baseline schemes while having lower online computational complexity.
arXiv Detail & Related papers (2020-10-11T05:41:40Z) - Stacked Auto Encoder Based Deep Reinforcement Learning for Online
Resource Scheduling in Large-Scale MEC Networks [44.40722828581203]
An online resource scheduling framework is proposed for minimizing the sum of weighted task latency for all the Internet of things (IoT) users.
A deep reinforcement learning (DRL) based solution is proposed, which includes the following components.
A preserved and prioritized experience replay (2p-ER) is introduced to assist the DRL to train the policy network and find the optimal offloading policy.
arXiv Detail & Related papers (2020-01-24T23:01:15Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.