論文の概要: Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need
- arxiv url: http://arxiv.org/abs/2302.02615v1
- Date: Mon, 6 Feb 2023 08:24:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-07 17:24:52.924292
- Title: Rethinking Out-of-distribution (OOD) Detection: Masked Image Modeling is
All You Need
- Title(参考訳): out-of-distribution (ood) 検出の再検討: マスク付きイメージモデリングは必要なだけ
- Authors: Jingyao Li, Pengguang Chen, Shaozuo Yu, Zexin He, Shu Liu, Jiaya Jia
- Abstract要約: 簡単な再構築手法を用いることで,OOD検出の性能が大幅に向上する可能性が示唆された。
我々は、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、マスケ画像モデリング(Masked Image Modeling)を採用する。
- 参考スコア(独自算出の注目度): 52.88953913542445
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The core of out-of-distribution (OOD) detection is to learn the
in-distribution (ID) representation, which is distinguishable from OOD samples.
Previous work applied recognition-based methods to learn the ID features, which
tend to learn shortcuts instead of comprehensive representations. In this work,
we find surprisingly that simply using reconstruction-based methods could boost
the performance of OOD detection significantly. We deeply explore the main
contributors of OOD detection and find that reconstruction-based pretext tasks
have the potential to provide a generally applicable and efficacious prior,
which benefits the model in learning intrinsic data distributions of the ID
dataset. Specifically, we take Masked Image Modeling as a pretext task for our
OOD detection framework (MOOD). Without bells and whistles, MOOD outperforms
previous SOTA of one-class OOD detection by 5.7%, multi-class OOD detection by
3.0%, and near-distribution OOD detection by 2.1%. It even defeats the
10-shot-per-class outlier exposure OOD detection, although we do not include
any OOD samples for our detection
- Abstract(参考訳): out-of-distribution (ood) 検出の中核は、ood サンプルと区別可能な in-distribution (id) 表現を学ぶことである。
従来の研究は、包括的表現の代わりにショートカットを学習する傾向があるID特徴を学習するための認識に基づく手法を適用していた。
本研究は, 簡単な再構成手法を用いることでOOD検出性能が著しく向上することを示す。
我々は,OOD検出の主なコントリビュータを深く掘り下げ,再構成に基づくプレテキストタスクが,一般的に適用可能で効果的な事前情報を提供する可能性を秘め,IDデータセットの本質的なデータ分布を学習するモデルに有効であることを示す。
具体的には、OOD検出フレームワーク(MOOD)のプリテキストタスクとして、Masked Image Modelingを取り上げます。
ベルとホイッスルがなければ、MOODは1級のOOD検出の5.7%、多級のOOD検出の3.0%、ほぼ分布のOOD検出の2.1%において、以前のSOTAよりも優れていた。
OOD検出にはOODサンプルは含まれていませんが、クラス別10ショットのOOD露光を破ります。
関連論文リスト
- WeiPer: OOD Detection using Weight Perturbations of Class Projections [11.130659240045544]
入力のよりリッチな表現を生成する最終完全連結層にクラスプロジェクションの摂動を導入する。
我々はOpenOODフレームワークの複数のベンチマークで最先端のOOD検出結果を得る。
論文 参考訳(メタデータ) (2024-05-27T13:38:28Z) - MOODv2: Masked Image Modeling for Out-of-Distribution Detection [57.17163962383442]
本研究は,様々なOODスコア関数を用いて,個別の事前学習課題について検討する。
当社のフレームワークMOODv2は,14.30%のAUROCをImageNetで95.68%に向上し,CIFAR-10で99.98%を達成した。
論文 参考訳(メタデータ) (2024-01-05T02:57:58Z) - OOD Aware Supervised Contrastive Learning [13.329080722482187]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習モデルの安全なデプロイにおいて重要な問題である。
我々は、Supervised Contrastive (SupCon)トレーニングで学んだ強力な表現を活用し、OODデータに対する堅牢性を学ぶための総合的なアプローチを提案する。
我々の解は単純で効率的であり、閉集合教師付きコントラスト表現学習の自然な拡張として機能する。
論文 参考訳(メタデータ) (2023-10-03T10:38:39Z) - Scaling for Training Time and Post-hoc Out-of-distribution Detection
Enhancement [41.650761556671775]
本稿では,最近の最先端のアウト・オブ・ディストリビューション(OOD)検出手法に関する知見と分析を行う。
我々は,活性化拡大がOOD検出に有害な影響を及ぼす一方で,活性化スケーリングが促進されることを実証した。
OpenOOD v1.5 ImageNet-1Kベンチマークで、AUROCスコアは、近OODでは+1.85%、遠OODデータセットでは+0.74%である。
論文 参考訳(メタデータ) (2023-09-30T02:10:54Z) - General-Purpose Multi-Modal OOD Detection Framework [5.287829685181842]
アウト・オブ・ディストリビューション(OOD)検出は、機械学習(ML)システムの安全性と信頼性を保証するために重要なトレーニングデータとは異なるテストサンプルを特定する。
本稿では,2値分類器とコントラスト学習コンポーネントを組み合わせた,汎用的な弱教師付きOOD検出フレームワークWOODを提案する。
提案したWOODモデルを複数の実世界のデータセット上で評価し、実験結果により、WOODモデルがマルチモーダルOOD検出の最先端手法よりも優れていることを示す。
論文 参考訳(メタデータ) (2023-07-24T18:50:49Z) - OpenOOD v1.5: Enhanced Benchmark for Out-of-Distribution Detection [82.85303878718207]
アウト・オブ・ディストリビューション(OOD)検出は、オープンワールド・インテリジェントシステムの信頼性の高い運用に不可欠である。
本稿では,OOD検出手法の精度,標準化,ユーザフレンドリな評価を保証したOpenOOD v1.5を提案する。
論文 参考訳(メタデータ) (2023-06-15T17:28:00Z) - Pseudo-OOD training for robust language models [78.15712542481859]
OOD検出は、あらゆる産業規模のアプリケーションに対する信頼性の高い機械学習モデルの鍵となるコンポーネントである。
In-distribution(IND)データを用いて擬似OODサンプルを生成するPOORE-POORE-POSthoc pseudo-Ood Regularizationを提案する。
我々は3つの現実世界の対話システムに関する枠組みを広く評価し、OOD検出における新たな最先端技術を実現した。
論文 参考訳(メタデータ) (2022-10-17T14:32:02Z) - Contrastive Training for Improved Out-of-Distribution Detection [36.61315534166451]
本稿では,OOD検出性能向上のためのコントラストトレーニングを提案する。
コントラストトレーニングは,多くのベンチマークにおいてOOD検出性能を著しく向上させることを示す。
論文 参考訳(メタデータ) (2020-07-10T18:40:37Z) - ATOM: Robustifying Out-of-distribution Detection Using Outlier Mining [51.19164318924997]
インフォメーション・アウトリエ・マイニングによるアドリアトレーニングは、OOD検出の堅牢性を向上させる。
ATOMは,古典的,敵対的なOOD評価タスクの幅広いファミリーの下で,最先端のパフォーマンスを達成する。
論文 参考訳(メタデータ) (2020-06-26T20:58:05Z) - Robust Out-of-distribution Detection for Neural Networks [51.19164318924997]
既存の検出機構は, 分布内およびOOD入力の評価において, 極めて脆弱であることを示す。
ALOE と呼ばれる実効性のあるアルゴリズムを提案する。このアルゴリズムは,逆向きに構築された逆数と外数の両方の例にモデルを公開することにより,堅牢なトレーニングを行う。
論文 参考訳(メタデータ) (2020-03-21T17:46:28Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。