論文の概要: V1T: large-scale mouse V1 response prediction using a Vision Transformer
- arxiv url: http://arxiv.org/abs/2302.03023v3
- Date: Tue, 30 May 2023 15:57:11 GMT
- ステータス: 処理完了
- システム内更新日: 2023-06-01 01:39:42.392139
- Title: V1T: large-scale mouse V1 response prediction using a Vision Transformer
- Title(参考訳): v1t:視覚トランスフォーマーを用いた大規模マウスv1応答予測
- Authors: Bryan M. Li, Isabel M. Cornacchia, Nathalie L. Rochefort, Arno Onken
- Abstract要約: 動物間における視覚的・行動的表現の共有を学習するビジョントランスフォーマーに基づく新しいアーキテクチャであるV1Tを紹介する。
マウスの一次視覚野から記録された2つの大きなデータセットを用いて、我々のモデルを評価し、予測性能を12.7%以上向上させた。
- 参考スコア(独自算出の注目度): 3.2498534294827044
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Accurate predictive models of the visual cortex neural response to natural
visual stimuli remain a challenge in computational neuroscience. In this work,
we introduce V1T, a novel Vision Transformer based architecture that learns a
shared visual and behavioral representation across animals. We evaluate our
model on two large datasets recorded from mouse primary visual cortex and
outperform previous convolution-based models by more than 12.7% in prediction
performance. Moreover, we show that the self-attention weights learned by the
Transformer correlate with the population receptive fields. Our model thus sets
a new benchmark for neural response prediction and can be used jointly with
behavioral and neural recordings to reveal meaningful characteristic features
of the visual cortex.
- Abstract(参考訳): 自然視刺激に対する視覚野神経反応の正確な予測モデルは、計算神経科学の課題である。
本稿では,動物間の視覚と行動の共通表現を学習する新しい視覚トランスフォーマーアーキテクチャであるv1tを紹介する。
マウス一次視覚野から記録された2つの大規模データセットを用いて,従来の畳み込みモデルと比較して予測性能が12.7%以上向上した。
さらに,トランスフォーマーが学習した自己意識重みは,集団受容野と相関することを示した。
そこで本モデルはニューラルレスポンス予測のための新しいベンチマークを設定し,行動記録とニューラル記録を併用して視覚野の特徴を明らかにする。
関連論文リスト
- Scaling Laws for Task-Optimized Models of the Primate Visual Ventral Stream [3.4526439922541705]
霊長類視覚腹側流(VVS)のモデリングにおけるスケーリング法則の評価を行った。
行動アライメントはより大きなモデルでスケールし続けるが、ニューラルアライメントは飽和する。
スケーリングの増加は、少数のサンプルでトレーニングされた小さなモデルでは、アライメントが不十分である、高レベルの視覚領域において特に有益である。
論文 参考訳(メタデータ) (2024-11-08T17:13:53Z) - Matching the Neuronal Representations of V1 is Necessary to Improve
Robustness in CNNs with V1-like Front-ends [1.8434042562191815]
近年,畳み込みニューラルネットワークの前方における初期視覚領域の計算シミュレーションにより,画像劣化に対するロバスト性の向上が示されている。
ここでは、霊長類V1に見られるRF特性の分布を正確に一致させることから生じる神経表現が、この堅牢性向上の鍵となることを示す。
論文 参考訳(メタデータ) (2023-10-16T16:52:15Z) - Adapting Brain-Like Neural Networks for Modeling Cortical Visual
Prostheses [68.96380145211093]
皮質補綴は視覚野に移植された装置で、電気的にニューロンを刺激することで失った視力を回復しようとする。
現在、これらのデバイスが提供する視覚は限られており、刺激による視覚知覚を正確に予測することはオープンな課題である。
我々は、視覚システムの有望なモデルとして登場した「脳様」畳み込みニューラルネットワーク(CNN)を活用することで、この問題に対処することを提案する。
論文 参考訳(メタデータ) (2022-09-27T17:33:19Z) - The Sensorium competition on predicting large-scale mouse primary visual
cortex activity [28.272130531998936]
本稿では,マウス視覚システムの最先端モデルを特定するために,Sensiumベンチマークコンペティションを提案する。
28,000以上のニューロンの反応を含むマウス一次視覚野から大規模なデータセットを収集した。
ベンチマークの課題は、保持されたテストセット上での神経反応の予測性能に基づいて、モデルをランク付けする。
論文 参考訳(メタデータ) (2022-06-17T10:09:57Z) - Top-down inference in an early visual cortex inspired hierarchical
Variational Autoencoder [0.0]
我々は変分オートエンコーダの進歩を利用して、自然画像に基づいて訓練された疎い符号化階層型VAEを用いて、初期視覚野を調査する。
一次および二次視覚皮質に見られるものと類似した表現は、軽度の誘導バイアスの下で自然に現れる。
生成モデルを用いた2つの計算のシグネチャに対して,ニューロサイエンスに着想を得た認識モデルの選択が重要であることを示す。
論文 参考訳(メタデータ) (2022-06-01T12:21:58Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
識別タスクを解くニューラルネットワークが、入力から直接畳み込み構造を学習できることを示す。
データモデルを慎重に設計することにより、このパターンの出現は、入力の非ガウス的、高次局所構造によって引き起こされることを示す。
論文 参考訳(メタデータ) (2022-02-01T17:11:13Z) - Self-Supervised Graph Representation Learning for Neuronal Morphologies [75.38832711445421]
ラベルのないデータセットから3次元神経形態の低次元表現を学習するためのデータ駆動型アプローチであるGraphDINOを提案する。
2つの異なる種と複数の脳領域において、この方法では、専門家による手動の特徴に基づく分類と同程度に形態学的細胞型クラスタリングが得られることを示す。
提案手法は,大規模データセットにおける新しい形態的特徴や細胞型の発見を可能にする可能性がある。
論文 参考訳(メタデータ) (2021-12-23T12:17:47Z) - STAR: Sparse Transformer-based Action Recognition [61.490243467748314]
本研究は,空間的次元と時間的次元に細かな注意を払っている新しいスケルトンに基づく人間行動認識モデルを提案する。
実験により、トレーニング可能なパラメータをはるかに少なくし、トレーニングや推論の高速化を図りながら、モデルが同等のパフォーマンスを達成できることが示されている。
論文 参考訳(メタデータ) (2021-07-15T02:53:11Z) - Deep Reinforcement Learning Models Predict Visual Responses in the
Brain: A Preliminary Result [1.0323063834827415]
強化学習を用いてニューラルネットワークモデルをトレーニングし、3Dコンピュータゲームをプレイします。
これらの強化学習モデルは、初期視覚領域において、神経応答予測精度のスコアを得る。
対照的に、教師付きニューラルネットワークモデルでは、より高い視覚領域において、より優れた神経応答予測が得られる。
論文 参考訳(メタデータ) (2021-06-18T13:10:06Z) - The Neural Coding Framework for Learning Generative Models [91.0357317238509]
本稿では,脳の予測処理理論に触発された新しい神経生成モデルを提案する。
同様に、私たちの生成モデルにおける人工ニューロンは、隣接するニューロンが何をするかを予測し、予測が現実にどの程度一致するかに基づいてパラメータを調整します。
論文 参考訳(メタデータ) (2020-12-07T01:20:38Z) - Muti-view Mouse Social Behaviour Recognition with Deep Graphical Model [124.26611454540813]
マウスの社会的行動分析は神経変性疾患の治療効果を評価する貴重なツールである。
マウスの社会行動の豊かな記述を創出する可能性から、ネズミの観察にマルチビュービデオ記録を使用することは、ますます注目を集めている。
本稿では,ビュー固有のサブ構造とビュー共有サブ構造を協調的に学習する,新しい多視点潜在意識・動的識別モデルを提案する。
論文 参考訳(メタデータ) (2020-11-04T18:09:58Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。