Testing the quantum nature of gravity without entanglement
- URL: http://arxiv.org/abs/2302.03075v3
- Date: Tue, 21 May 2024 22:29:59 GMT
- Title: Testing the quantum nature of gravity without entanglement
- Authors: Ludovico Lami, Julen S. Pedernales, Martin B. Plenio,
- Abstract summary: Given a unitary evolution $U$, how well can $U$ be simulated by local operations and classical communication (LOCC) on that ensemble?
We establish a general, efficiently computable upper bound on the maximal LOCC simulation fidelity.
We then apply our findings to the fundamental setting where $U$ implements a quantum Newtonian Hamiltonian over a gravitationally interacting system.
- Score: 5.461938536945723
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Given a unitary evolution $U$ on a multi-partite quantum system and an ensemble of initial states, how well can $U$ be simulated by local operations and classical communication (LOCC) on that ensemble? We answer this question by establishing a general, efficiently computable upper bound on the maximal LOCC simulation fidelity -- what we call an 'LOCC inequality'. We then apply our findings to the fundamental setting where $U$ implements a quantum Newtonian Hamiltonian over a gravitationally interacting system. Violation of our LOCC inequality can rule out the LOCCness of the underlying evolution, thereby establishing the non-classicality of the gravitational dynamics, which can no longer be explained by a local classical field. As a prominent application of this scheme we study systems of quantum harmonic oscillators initialised in coherent states following a normal distribution and interacting via Newtonian gravity, and discuss a possible physical implementation with torsion pendula. One of our main technical contributions is the analytical calculation of the above LOCC inequality for this family of systems. As opposed to existing tests based on the detection of gravitationally mediated entanglement, our proposal works with coherent states alone, and thus it does not require the generation of largely delocalised states of motion nor the detection of entanglement, which is never created at any point in the process.
Related papers
- Optimizing random local Hamiltonians by dissipation [44.99833362998488]
We prove that a simplified quantum Gibbs sampling algorithm achieves a $Omega(frac1k)$-fraction approximation of the optimum.
Our results suggest that finding low-energy states for sparsified (quasi)local spin and fermionic models is quantumly easy but classically nontrivial.
arXiv Detail & Related papers (2024-11-04T20:21:16Z) - Generating arbitrary superpositions of nonclassical quantum harmonic oscillator states [0.0]
We create arbitrary superpositions of nonclassical and non-Gaussian states of a quantum harmonic oscillator using the motion of a trapped ion coupled to its internal spin states.
We observe the nonclassical nature of these states in the form of Wigner negativity following a full state reconstruction.
arXiv Detail & Related papers (2024-09-05T12:45:57Z) - Mixed Quantum-Semiclassical Simulation [0.0]
We study the quantum simulation of mixed quantum-semiclassical (MQS) systems, of fundamental interest in many areas of physics.
A basic question for these systems is whether quantum algorithms of MQS systems would be valuable at all, when one could instead study the full quantum-quantum system.
arXiv Detail & Related papers (2023-08-30T17:02:33Z) - Certification of non-Gaussian Einstein-Podolsky-Rosen Steering [2.9290107337630613]
We present an efficient non-Gaussian steering criterion based on the high-order observables.
We propose a feasible scheme to create multi-component cat states with tunable size.
Our work reveals the fundamental characteristics of non-Gaussianity and quantum correlations.
arXiv Detail & Related papers (2023-08-26T12:57:22Z) - Resolving nonclassical magnon composition of a magnetic ground state via
a qubit [44.99833362998488]
We show that a direct dispersive coupling between a qubit and a noneigenmode magnon enables detecting the magnonic number states' quantum superposition.
This unique coupling is found to enable control over the equilibrium magnon squeezing and a deterministic generation of squeezed even Fock states.
arXiv Detail & Related papers (2023-06-08T09:30:04Z) - Quantum dynamics corresponding to chaotic BKL scenario [62.997667081978825]
Quantization smears the gravitational singularity avoiding its localization in the configuration space.
Results suggest that the generic singularity of general relativity can be avoided at quantum level.
arXiv Detail & Related papers (2022-04-24T13:32:45Z) - Quantum Causal Inference in the Presence of Hidden Common Causes: an
Entropic Approach [34.77250498401055]
We put forth a new theoretical framework for merging quantum information science and causal inference by exploiting entropic principles.
We apply our proposed framework to an experimentally relevant scenario of identifying message senders on quantum noisy links.
This approach can lay the foundations of identifying originators of malicious activity on future multi-node quantum networks.
arXiv Detail & Related papers (2021-04-24T22:45:50Z) - Error mitigation and quantum-assisted simulation in the error corrected
regime [77.34726150561087]
A standard approach to quantum computing is based on the idea of promoting a classically simulable and fault-tolerant set of operations.
We show how the addition of noisy magic resources allows one to boost classical quasiprobability simulations of a quantum circuit.
arXiv Detail & Related papers (2021-03-12T20:58:41Z) - A no-go theorem on the nature of the gravitational field beyond quantum
theory [0.0]
Table-top experiments involving massive quantum systems have been proposed to test the interface of quantum theory and gravity.
In particular, the crucial point of the debate is whether it is possible to conclude anything on the quantum nature of the gravitational field.
We introduce the framework of Generalised Probabilistic Theories (GPTs) to study the nature of the gravitational field.
arXiv Detail & Related papers (2020-12-02T19:00:03Z) - Squeezed coherent states for gravitational well in noncommutative space [0.0]
We have studied the quantum gravitational well (GW) under the shed of noncommutative (NC) space.
We have considered both position-position and momentum-momentum noncommutativity.
We have shown that the solutions of the time-dependent Schr"odinger equation are squeezed-coherent states.
arXiv Detail & Related papers (2020-06-20T23:02:23Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.