Bose-Marletto-Vedral experiment without observable spacetime superpositions
- URL: http://arxiv.org/abs/2506.21122v2
- Date: Fri, 27 Jun 2025 12:48:32 GMT
- Title: Bose-Marletto-Vedral experiment without observable spacetime superpositions
- Authors: Nicetu Tibau Vidal, Chiara Marletto, Vlatko Vedral, Giulio Chiribella,
- Abstract summary: We show that entanglement can be generated by gravity without requiring spacetime superpositions or quantum spacetime degrees of freedom.<n>Specifically, we showcase how entanglement can be generated using three distinct toy models.
- Score: 0.1874930567916036
- License: http://creativecommons.org/licenses/by-nc-nd/4.0/
- Abstract: Reconciling quantum mechanics and general relativity remains one of the most profound challenges in modern physics. The BMV (Bose-Marletto-Vedral) experiment can assess the quantum nature of gravity by testing whether gravitational interactions can generate entanglement between quantum systems. In this work, we show that entanglement can be generated by gravity without requiring spacetime superpositions or quantum spacetime degrees of freedom by using mediators that do not satisfy the usual property of local tomography when coupling to quantum matter. Specifically, we showcase how entanglement can be generated using three distinct toy models that display non-locally tomographic couplings between quantum matter and a locally classical gravitational mediator. These models include (i) fermionic systems with the parity superselection rule, (ii) non-Abelian anyonic systems, and (iii) a novel bit anti-bit model. Our results demonstrate a crucial point: a gravitational mediator which does not exhibit superpositions of its classical basis but still qualifies as non-classical via non-locally tomographic coupling mechanisms can generate entanglement through local interactions. This work also underscores the importance of relaxing local tomography in exploring the quantum-gravitational interface. It provides a novel perspective on the role of spacetime degrees of freedom in entanglement generation through local interactions.
Related papers
- Experimental realization and synchronization of a quantum van der Pol oscillator [18.069593561319177]
We present a paradigmatic autonomous quantum driven-dissipative system with nonlinear damping, using a single trapped atom.<n>We demonstrate the existence of a quantum limit cycle in phase space in the absence of a drive.<n>We additionally show that synchronization can be enhanced with the help of squeezing perpendicular to the direction of the drive and, counterintuitively, linear dissipation.
arXiv Detail & Related papers (2025-04-01T13:02:50Z) - Theory of the correlated quantum Zeno effect in a monitored qubit dimer [41.94295877935867]
We show how the competition between two measurement processes give rise to two distinct Quantum Zeno (QZ) regimes.<n>We develop a theory based on a Gutzwiller ansatz for the wavefunction that is able to capture the structure of the Hilbert phase diagram.<n>We show how the two QZ regimes are intimately connected to the topology of the flow of the underlying non-Hermitian Hamiltonian governing the no-click evolution.
arXiv Detail & Related papers (2025-03-28T19:44:48Z) - Benchmarks for quantum communication via gravity [0.0]
We establish limitations and bounds on the transmission of quantum states between gravitationally interacting mechanical oscillators under different models of gravity.<n>This provides benchmarks that can enable tests for quantum features of gravity.
arXiv Detail & Related papers (2025-03-05T15:21:31Z) - Operationally classical simulation of quantum states [41.94295877935867]
A classical state-preparation device cannot generate superpositions and hence its emitted states must commute.<n>We show that no such simulation exists, thereby certifying quantum coherence.<n>Our approach is a possible avenue to understand how and to what extent quantum states defy generic models based on classical devices.
arXiv Detail & Related papers (2025-02-03T15:25:03Z) - Colloquium: Quantum Properties and Functionalities of Magnetic Skyrmions [40.282478038074984]
Competing magnetic interactions may stabilize smooth magnetization textures that can be characterized by a topological winding number.
Such textures, which are spatially localized within a two-dimensional plane, are commonly known as skyrmions.
This Colloquium considers quantum effects associated with skyrmion textures: their theoretical origins, the experimental and material challenges associated with their detection, and the promise of exploiting them for quantum operations.
arXiv Detail & Related papers (2024-10-15T09:27:20Z) - To be or not to be, but where? [0.0]
The identification of physical subsystems in quantum mechanics as compared to classical mechanics poses conceptual challenges.<n>Covariant linearized quantum gravity disrupts this framework by preventing the formation of gauge-invariant local algebras.<n>A pivotal shift is proposed: the identification between classical and quantum systems should be evolving rather than fixed, opening the possibility of a single-world unitary quantum mechanics.
arXiv Detail & Related papers (2024-05-31T17:22:39Z) - Table-top nanodiamond interferometer enabling quantum gravity tests [34.82692226532414]
We present a feasibility study for a table-top nanodiamond-based interferometer.
By relying on quantum superpositions of steady massive objects our interferometer may allow exploiting just small-range electromagnetic fields.
arXiv Detail & Related papers (2024-05-31T17:20:59Z) - Testing Quantum Gravity using Pulsed Optomechanical Systems [13.650870855008112]
We consider the Schr"odinger-Newton (SN) theory and the Correlated Worldline (CWL) theory, and show that they can be distinguished from conventional quantum mechanics.
We find that discriminating between the theories will be very difficult until experimental control over low frequency quantum optomechanical systems is pushed further.
arXiv Detail & Related papers (2023-11-03T17:06:57Z) - Gravitationally modulated quantum correlations: Discriminating classical
and quantum models of ultra-compact objects with Bell nonlocality [0.0]
We investigate the relation between quantum nonlocality and gravity at the astrophysical scale.
Considering particle pairs orbiting in the strong gravitational field of ultra-compact objects, we find that the violation of Bell inequality acquires an angular modulation factor.
arXiv Detail & Related papers (2023-04-21T10:31:23Z) - Is gravitational entanglement evidence for the quantization of
spacetime? [0.0]
Experiments witnessing the entanglement between two particles interacting only via the gravitational field have been proposed as a test whether gravity must be quantized.
We present a parametrized model for the gravitational interaction of quantum matter on a classical spacetime, inspired by the de Broglie-Bohm formulation of quantum mechanics.
arXiv Detail & Related papers (2022-05-02T14:37:24Z) - Limits on inference of gravitational entanglement [0.6876932834688035]
We study semi-classical models of the atom interferometer that can reproduce the same effect.
We show that the core signature -- periodic collapses and revivals of the visibility -- can appear if the atom is subject to a random unitary channel.
arXiv Detail & Related papers (2021-11-01T13:35:00Z) - Spin Entanglement and Magnetic Competition via Long-range Interactions
in Spinor Quantum Optical Lattices [62.997667081978825]
We study the effects of cavity mediated long range magnetic interactions and optical lattices in ultracold matter.
We find that global interactions modify the underlying magnetic character of the system while introducing competition scenarios.
These allow new alternatives toward the design of robust mechanisms for quantum information purposes.
arXiv Detail & Related papers (2020-11-16T08:03:44Z) - Quantum Hall phase emerging in an array of atoms interacting with
photons [101.18253437732933]
Topological quantum phases underpin many concepts of modern physics.
Here, we reveal that the quantum Hall phase with topological edge states, spectral Landau levels and Hofstadter butterfly can emerge in a simple quantum system.
Such systems, arrays of two-level atoms (qubits) coupled to light being described by the classical Dicke model, have recently been realized in experiments with cold atoms and superconducting qubits.
arXiv Detail & Related papers (2020-03-18T14:56:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.