One-shot Empirical Privacy Estimation for Federated Learning
- URL: http://arxiv.org/abs/2302.03098v5
- Date: Thu, 18 Apr 2024 17:14:37 GMT
- Title: One-shot Empirical Privacy Estimation for Federated Learning
- Authors: Galen Andrew, Peter Kairouz, Sewoong Oh, Alina Oprea, H. Brendan McMahan, Vinith M. Suriyakumar,
- Abstract summary: "One-shot" approach allows efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters.
We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism.
- Score: 43.317478030880956
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Privacy estimation techniques for differentially private (DP) algorithms are useful for comparing against analytical bounds, or to empirically measure privacy loss in settings where known analytical bounds are not tight. However, existing privacy auditing techniques usually make strong assumptions on the adversary (e.g., knowledge of intermediate model iterates or the training data distribution), are tailored to specific tasks, model architectures, or DP algorithm, and/or require retraining the model many times (typically on the order of thousands). These shortcomings make deploying such techniques at scale difficult in practice, especially in federated settings where model training can take days or weeks. In this work, we present a novel "one-shot" approach that can systematically address these challenges, allowing efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters, and without requiring any a priori knowledge about the model architecture, task, or DP training algorithm. We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism, and we demonstrate its performance on well-established FL benchmark datasets under several adversarial threat models.
Related papers
- Too Good to be True? Turn Any Model Differentially Private With DP-Weights [0.0]
We introduce a groundbreaking approach that applies differential privacy noise to the model's weights after training.
We offer a comprehensive mathematical proof for this novel approach's privacy bounds.
We empirically evaluate its effectiveness using membership inference attacks and performance evaluations.
arXiv Detail & Related papers (2024-06-27T19:58:11Z) - Fantastic Gains and Where to Find Them: On the Existence and Prospect of
General Knowledge Transfer between Any Pretrained Model [74.62272538148245]
We show that for arbitrary pairings of pretrained models, one model extracts significant data context unavailable in the other.
We investigate if it is possible to transfer such "complementary" knowledge from one model to another without performance degradation.
arXiv Detail & Related papers (2023-10-26T17:59:46Z) - Re-thinking Data Availablity Attacks Against Deep Neural Networks [53.64624167867274]
In this paper, we re-examine the concept of unlearnable examples and discern that the existing robust error-minimizing noise presents an inaccurate optimization objective.
We introduce a novel optimization paradigm that yields improved protection results with reduced computational time requirements.
arXiv Detail & Related papers (2023-05-18T04:03:51Z) - Enhancing Multiple Reliability Measures via Nuisance-extended
Information Bottleneck [77.37409441129995]
In practical scenarios where training data is limited, many predictive signals in the data can be rather from some biases in data acquisition.
We consider an adversarial threat model under a mutual information constraint to cover a wider class of perturbations in training.
We propose an autoencoder-based training to implement the objective, as well as practical encoder designs to facilitate the proposed hybrid discriminative-generative training.
arXiv Detail & Related papers (2023-03-24T16:03:21Z) - Tight Auditing of Differentially Private Machine Learning [77.38590306275877]
For private machine learning, existing auditing mechanisms are tight.
They only give tight estimates under implausible worst-case assumptions.
We design an improved auditing scheme that yields tight privacy estimates for natural (not adversarially crafted) datasets.
arXiv Detail & Related papers (2023-02-15T21:40:33Z) - On the utility and protection of optimization with differential privacy
and classic regularization techniques [9.413131350284083]
We study the effectiveness of the differentially-private descent (DP-SGD) algorithm against standard optimization practices with regularization techniques.
We discuss differential privacy's flaws and limits and empirically demonstrate the often superior privacy-preserving properties of dropout and l2-regularization.
arXiv Detail & Related papers (2022-09-07T14:10:21Z) - Leveraging Adversarial Examples to Quantify Membership Information
Leakage [30.55736840515317]
We develop a novel approach to address the problem of membership inference in pattern recognition models.
We argue that this quantity reflects the likelihood of belonging to the training data.
Our method performs comparable or even outperforms state-of-the-art strategies.
arXiv Detail & Related papers (2022-03-17T19:09:38Z) - Enhanced Membership Inference Attacks against Machine Learning Models [9.26208227402571]
Membership inference attacks are used to quantify the private information that a model leaks about the individual data points in its training set.
We derive new attack algorithms that can achieve a high AUC score while also highlighting the different factors that affect their performance.
Our algorithms capture a very precise approximation of privacy loss in models, and can be used as a tool to perform an accurate and informed estimation of privacy risk in machine learning models.
arXiv Detail & Related papers (2021-11-18T13:31:22Z) - PEARL: Data Synthesis via Private Embeddings and Adversarial
Reconstruction Learning [1.8692254863855962]
We propose a new framework of data using deep generative models in a differentially private manner.
Within our framework, sensitive data are sanitized with rigorous privacy guarantees in a one-shot fashion.
Our proposal has theoretical guarantees of performance, and empirical evaluations on multiple datasets show that our approach outperforms other methods at reasonable levels of privacy.
arXiv Detail & Related papers (2021-06-08T18:00:01Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.