Too Good to be True? Turn Any Model Differentially Private With DP-Weights
- URL: http://arxiv.org/abs/2406.19507v1
- Date: Thu, 27 Jun 2024 19:58:11 GMT
- Title: Too Good to be True? Turn Any Model Differentially Private With DP-Weights
- Authors: David Zagardo,
- Abstract summary: We introduce a groundbreaking approach that applies differential privacy noise to the model's weights after training.
We offer a comprehensive mathematical proof for this novel approach's privacy bounds.
We empirically evaluate its effectiveness using membership inference attacks and performance evaluations.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Imagine training a machine learning model with Differentially Private Stochastic Gradient Descent (DP-SGD), only to discover post-training that the noise level was either too high, crippling your model's utility, or too low, compromising privacy. The dreaded realization hits: you must start the lengthy training process from scratch. But what if you could avoid this retraining nightmare? In this study, we introduce a groundbreaking approach (to our knowledge) that applies differential privacy noise to the model's weights after training. We offer a comprehensive mathematical proof for this novel approach's privacy bounds, use formal methods to validate its privacy guarantees, and empirically evaluate its effectiveness using membership inference attacks and performance evaluations. This method allows for a single training run, followed by post-hoc noise adjustments to achieve optimal privacy-utility trade-offs. We compare this novel fine-tuned model (DP-Weights model) to a traditional DP-SGD model, demonstrating that our approach yields statistically similar performance and privacy guarantees. Our results validate the efficacy of post-training noise application, promising significant time savings and flexibility in fine-tuning differential privacy parameters, making it a practical alternative for deploying differentially private models in real-world scenarios.
Related papers
- Pseudo-Probability Unlearning: Towards Efficient and Privacy-Preserving Machine Unlearning [59.29849532966454]
We propose PseudoProbability Unlearning (PPU), a novel method that enables models to forget data to adhere to privacy-preserving manner.
Our method achieves over 20% improvements in forgetting error compared to the state-of-the-art.
arXiv Detail & Related papers (2024-11-04T21:27:06Z) - Pre-training Differentially Private Models with Limited Public Data [54.943023722114134]
differential privacy (DP) is a prominent method to gauge the degree of security provided to the models.
DP is yet not capable of protecting a substantial portion of the data used during the initial pre-training stage.
We develop a novel DP continual pre-training strategy using only 10% of public data.
Our strategy can achieve DP accuracy of 41.5% on ImageNet-21k, as well as non-DP accuracy of 55.7% and and 60.0% on downstream tasks Places365 and iNaturalist-2021.
arXiv Detail & Related papers (2024-02-28T23:26:27Z) - One-shot Empirical Privacy Estimation for Federated Learning [43.317478030880956]
"One-shot" approach allows efficient auditing or estimation of the privacy loss of a model during the same, single training run used to fit model parameters.
We show that our method provides provably correct estimates for the privacy loss under the Gaussian mechanism.
arXiv Detail & Related papers (2023-02-06T19:58:28Z) - Fine-Tuning with Differential Privacy Necessitates an Additional
Hyperparameter Search [38.83524780461911]
We show how carefully selecting the layers being fine-tuned in the pretrained neural network allows us to establish new state-of-the-art tradeoffs between privacy and accuracy.
We achieve 77.9% accuracy for $(varepsilon, delta)= (2, 10-5)$ on CIFAR-100 for a model pretrained on ImageNet.
arXiv Detail & Related papers (2022-10-05T11:32:49Z) - On the utility and protection of optimization with differential privacy
and classic regularization techniques [9.413131350284083]
We study the effectiveness of the differentially-private descent (DP-SGD) algorithm against standard optimization practices with regularization techniques.
We discuss differential privacy's flaws and limits and empirically demonstrate the often superior privacy-preserving properties of dropout and l2-regularization.
arXiv Detail & Related papers (2022-09-07T14:10:21Z) - Large Scale Transfer Learning for Differentially Private Image
Classification [51.10365553035979]
Differential Privacy (DP) provides a formal framework for training machine learning models with individual example level privacy.
Private training using DP-SGD protects against leakage by injecting noise into individual example gradients.
While this result is quite appealing, the computational cost of training large-scale models with DP-SGD is substantially higher than non-private training.
arXiv Detail & Related papers (2022-05-06T01:22:20Z) - Don't Generate Me: Training Differentially Private Generative Models
with Sinkhorn Divergence [73.14373832423156]
We propose DP-Sinkhorn, a novel optimal transport-based generative method for learning data distributions from private data with differential privacy.
Unlike existing approaches for training differentially private generative models, we do not rely on adversarial objectives.
arXiv Detail & Related papers (2021-11-01T18:10:21Z) - Large Language Models Can Be Strong Differentially Private Learners [70.0317718115406]
Differentially Private (DP) learning has seen limited success for building large deep learning models of text.
We show that this performance drop can be mitigated with the use of large pretrained models.
We propose a memory saving technique that allows clipping in DP-SGD to run without instantiating per-example gradients.
arXiv Detail & Related papers (2021-10-12T01:45:27Z) - DPlis: Boosting Utility of Differentially Private Deep Learning via
Randomized Smoothing [0.0]
We propose DPlis--Differentially Private Learning wIth Smoothing.
We show that DPlis can effectively boost model quality and training stability under a given privacy budget.
arXiv Detail & Related papers (2021-03-02T06:33:14Z) - Tempered Sigmoid Activations for Deep Learning with Differential Privacy [33.574715000662316]
We show that the choice of activation function is central to bounding the sensitivity of privacy-preserving deep learning.
We achieve new state-of-the-art accuracy on MNIST, FashionMNIST, and CIFAR10 without any modification of the learning procedure fundamentals.
arXiv Detail & Related papers (2020-07-28T13:19:45Z) - User-Level Privacy-Preserving Federated Learning: Analysis and
Performance Optimization [77.43075255745389]
Federated learning (FL) is capable of preserving private data from mobile terminals (MTs) while training the data into useful models.
From a viewpoint of information theory, it is still possible for a curious server to infer private information from the shared models uploaded by MTs.
We propose a user-level differential privacy (UDP) algorithm by adding artificial noise to the shared models before uploading them to servers.
arXiv Detail & Related papers (2020-02-29T10:13:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.