論文の概要: Novel Building Detection and Location Intelligence Collection in Aerial
Satellite Imagery
- arxiv url: http://arxiv.org/abs/2302.03156v1
- Date: Mon, 6 Feb 2023 23:30:51 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-08 18:04:46.870373
- Title: Novel Building Detection and Location Intelligence Collection in Aerial
Satellite Imagery
- Title(参考訳): 航空衛星画像における新しい建物検出と位置情報収集
- Authors: Sandeep Singh, Christian Wiles, Ahmed Bilal
- Abstract要約: 空撮画像における建物構造の検出と情報化は、都市計画と管理にとって重要な解決策である。
地震時の避難ルートの計画、洪水管理など、重要な問題に答える中心となる部分である。
- 参考スコア(独自算出の注目度): 2.093287944284448
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Building structures detection and information about these buildings in aerial
images is an important solution for city planning and management, land use
analysis. It can be the center piece to answer important questions such as
planning evacuation routes in case of an earthquake, flood management, etc.
These applications rely on being able to accurately retrieve up-to-date
information. Being able to accurately detect buildings in a bounding box
centered on a specific latitude-longitude value can help greatly. The key
challenge is to be able to detect buildings which can be commercial,
industrial, hut settlements, or skyscrapers. Once we are able to detect such
buildings, our goal will be to cluster and categorize similar types of
buildings together.
- Abstract(参考訳): 空撮画像における建物構造の検出と情報化は、都市計画・管理・土地利用分析にとって重要な解決策である。
地震時の避難ルートの計画、洪水管理など、重要な問題に答える中心となる部分である。
これらのアプリケーションは、最新の情報を正確に取得できることに依存している。
特定の緯度経度値を中心とする境界ボックス内の建物を正確に検出できることは、大いに役立つ。
重要な課題は、商業、工業、小屋の居住地、高層ビルなどの建物を検知できるようにすることである。
このような建物を検出できれば、同様の種類の建物をクラスタ化し、分類することが目標になります。
関連論文リスト
- Extracting the U.S. building types from OpenStreetMap data [0.16060719742433224]
この研究は、アメリカ合衆国全体をカバーする住宅・非住宅の分類を提供することで包括的なデータセットを作成する。
そこで我々は,ビルディングフットプリントと利用可能なOpenStreetMap情報に基づいて,ビルディングタイプを分類するための教師なし機械学習手法を提案し,活用する。
この検証は、非住宅の建物分類の高精度化と、住宅用建物の高いリコールを示す。
論文 参考訳(メタデータ) (2024-09-09T15:05:27Z) - FADE: A Dataset for Detecting Falling Objects around Buildings in Video [75.48118923174712]
建物から落下する物体は、大きな衝撃力によって歩行者に重傷を負わせる可能性がある。
FADEには18のシーンから1,881本のビデオがあり、8つの落下物カテゴリー、4つの気象条件、4つのビデオ解像度がある。
動作情報を効果的に活用するFADE-Netと呼ばれる新しい物体検出手法を開発した。
論文 参考訳(メタデータ) (2024-08-11T11:43:56Z) - QuickQuakeBuildings: Post-earthquake SAR-Optical Dataset for Quick Damaged-building Detection [5.886875818210989]
このレターでは, 地震被害を受けた建物を, SAR(Synthetic Aperture Radar)と光学画像から検出するための最初のデータセットを提示する。
我々は、SARと光学データの両方のコアギスター化された建物の足跡と衛星画像パッチのデータセットを提供し、400万以上の建物を包含する。
論文 参考訳(メタデータ) (2023-12-11T18:19:36Z) - Building Coverage Estimation with Low-resolution Remote Sensing Imagery [65.95520230761544]
本稿では,低解像度衛星画像のみを用いた建物被覆量の推定手法を提案する。
本モデルでは, 世界中の開発レベルの異なる地域において, 建築範囲の予測において最大0.968の判定係数を達成している。
論文 参考訳(メタデータ) (2023-01-04T05:19:33Z) - UAV-based Visual Remote Sensing for Automated Building Inspection [15.471860216370251]
無人航空機(UAV)にコンピュータビジョンを組み込んだリモートセンシングシステムでは,地震時の建物建設や災害時の被害評価などの災害管理を支援する可能性を実証している。
本稿では,UAVに基づく画像データ収集による検査の自動化手法と,地震構造パラメータの推定を支援する後処理用ソフトウェアライブラリを提案する。
論文 参考訳(メタデータ) (2022-09-27T14:18:14Z) - The State of Aerial Surveillance: A Survey [62.198765910573556]
本稿では、コンピュータビジョンとパターン認識の観点から、人間中心の空中監視タスクの概要を概観する。
主な対象は、単体または複数の被験者が検出され、特定され、追跡され、再同定され、その振る舞いが分析される人間である。
論文 参考訳(メタデータ) (2022-01-09T20:13:27Z) - Mapping Vulnerable Populations with AI [23.732584273099054]
構築機能は、例えばツイートや地上画像などのソーシャルメディアデータを解析することで検索される。
これらの付加属性を付加したマップの構築により、より正確な人口密度マップを導出することができる。
論文 参考訳(メタデータ) (2021-07-29T15:52:11Z) - Object Detection in Aerial Images: A Large-Scale Benchmark and
Challenges [124.48654341780431]
航空画像(DOTA)におけるオブジェクトデテクションの大規模データセットとODAIの総合的ベースラインについて述べる。
提案するDOTAデータセットは,11,268個の空中画像から収集した18カテゴリのオブジェクト指向ボックスアノテーションの1,793,658個のオブジェクトインスタンスを含む。
70以上の構成を持つ10の最先端アルゴリズムをカバーするベースラインを構築し,各モデルの速度と精度を評価した。
論文 参考訳(メタデータ) (2021-02-24T11:20:55Z) - Post-Hurricane Damage Assessment Using Satellite Imagery and Geolocation
Features [0.2538209532048866]
本研究では,被災地の衛星画像と位置情報を活用し,災害後の被害建物を識別する混合データ手法を提案する。
この手法は、2017年のヒューストン大都市圏におけるハリケーン・ハーベイのケーススタディに基づいて、画像のみを用いて同様の作業を行うことで大幅に改善した。
本研究では,画像特徴に付加的な情報を提供するために位置情報機能の創造的な選択を行ったが,ドメイン知識や災害の種類に応じて,イベントの物理的挙動をモデル化するための他の機能を含めることはユーザ次第である。
論文 参考訳(メタデータ) (2020-12-15T21:30:19Z) - Urban Sensing based on Mobile Phone Data: Approaches, Applications and
Challenges [67.71975391801257]
モバイルデータ分析における多くの関心は、人間とその行動に関連している。
本研究の目的は,携帯電話データから知識を発見するために実装された手法や手法をレビューすることである。
論文 参考訳(メタデータ) (2020-08-29T15:14:03Z) - RescueNet: Joint Building Segmentation and Damage Assessment from
Satellite Imagery [83.49145695899388]
RescueNetは、建物を同時に分割し、個々の建物に対する損傷レベルを評価し、エンドツーエンドでトレーニングできる統一モデルである。
RescueNetは大規模で多様なxBDデータセットでテストされており、従来の手法よりもはるかに優れたセグメンテーションと損傷分類性能を実現している。
論文 参考訳(メタデータ) (2020-04-15T19:52:09Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。