論文の概要: Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
- arxiv url: http://arxiv.org/abs/2302.03180v2
- Date: Wed, 19 Jun 2024 06:58:30 GMT
- ステータス: 処理完了
- システム内更新日: 2024-06-22 09:10:16.320232
- Title: Understanding User Preferences in Explainable Artificial Intelligence: A Survey and a Mapping Function Proposal
- Title(参考訳): 説明可能な人工知能におけるユーザの嗜好を理解する:調査とマッピング機能の提案
- Authors: Maryam Hashemi, Ali Darejeh, Francisco Cruz,
- Abstract要約: 本研究は、説明可能な機械学習(XML)における既存の研究の徹底的なレビューを行う。
我々の主な目的は、XMLの領域内でXAIメソッドの分類を提供することです。
本稿では,ユーザとその所望のプロパティを考慮に入れたマッピング関数を提案し,XAI手法を提案する。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: The increasing complexity of AI systems has led to the growth of the field of Explainable Artificial Intelligence (XAI), which aims to provide explanations and justifications for the outputs of AI algorithms. While there is considerable demand for XAI, there remains a scarcity of studies aimed at comprehensively understanding the practical distinctions among different methods and effectively aligning each method with users individual needs, and ideally, offer a mapping function which can map each user with its specific needs to a method of explainability. This study endeavors to bridge this gap by conducting a thorough review of extant research in XAI, with a specific focus on Explainable Machine Learning (XML), and a keen eye on user needs. Our main objective is to offer a classification of XAI methods within the realm of XML, categorizing current works into three distinct domains: philosophy, theory, and practice, and providing a critical review for each category. Moreover, our study seeks to facilitate the connection between XAI users and the most suitable methods for them and tailor explanations to meet their specific needs by proposing a mapping function that take to account users and their desired properties and suggest an XAI method to them. This entails an examination of prevalent XAI approaches and an evaluation of their properties. The primary outcome of this study is the formulation of a clear and concise strategy for selecting the optimal XAI method to achieve a given goal, all while delivering personalized explanations tailored to individual users.
- Abstract(参考訳): AIシステムの複雑さの増大は、AIアルゴリズムの出力に関する説明と正当化を提供することを目的とした、説明可能な人工知能(XAI)の分野の成長につながった。
XAIにはかなりの需要があるが、異なる手法間の実践的区別を包括的に理解し、各手法を個人のニーズに効果的に整合させることを目的とした研究が残っており、理想的には、各ユーザの特定のニーズを説明可能性の方法にマッピングできるマッピング機能を提供している。
この研究は、XAIにおける既存の研究を徹底的にレビューし、説明可能な機械学習(XML)に特化して、ユーザニーズに鋭い目を向けることで、このギャップを埋めようとしている。
我々の主な目的は、XMLの領域内でXAIメソッドの分類を提供し、現在の作品を哲学、理論、実践の3つの異なる領域に分類し、各カテゴリに対して批判的なレビューを提供することである。
さらに, XAI 利用者と XAI 利用者との連携の促進を図るとともに,利用者と所望の属性を考慮に入れたマッピング機能を提案し,XAI の手法を提案する。
これは、一般的なXAIアプローチの検証とそれらの特性の評価を含む。
本研究の主な成果は,個々のユーザに適したパーソナライズされた説明を提供すると同時に,目標を達成するための最適なXAI手法を選択するための明確で簡潔な戦略を定式化することである。
関連論文リスト
- OpenHEXAI: An Open-Source Framework for Human-Centered Evaluation of Explainable Machine Learning [43.87507227859493]
本稿では,XAI 手法を人間中心で評価するオープンソースフレームワーク OpenHEXAI について述べる。
OpenHEAXIは、XAIメソッドの人間中心ベンチマークを促進するための、最初の大規模なインフラ構築である。
論文 参考訳(メタデータ) (2024-02-20T22:17:59Z) - XAI for All: Can Large Language Models Simplify Explainable AI? [0.0699049312989311]
x-[plAIn]"は、カスタムのLarge Language Modelを通じて、XAIをより広く利用できるようにする新しいアプローチである。
我々の目標は、様々なXAI手法の明確で簡潔な要約を生成できるモデルを設計することであった。
使用事例調査の結果から,本モデルは理解し易く,観衆特有の説明を提供するのに有効であることが示された。
論文 参考訳(メタデータ) (2024-01-23T21:47:12Z) - How much informative is your XAI? A decision-making assessment task to
objectively measure the goodness of explanations [53.01494092422942]
XAIに対する個人化アプローチとユーザ中心アプローチの数は、近年急速に増加している。
ユーザ中心のXAIアプローチがユーザとシステム間のインタラクションに肯定的な影響を与えることが明らかとなった。
我々は,XAIシステムの良否を客観的かつ定量的に評価するための評価課題を提案する。
論文 参考訳(メタデータ) (2023-12-07T15:49:39Z) - Strategies to exploit XAI to improve classification systems [0.0]
XAIは、AIモデルの意思決定プロセスに関する洞察を提供することを目的としている。
ほとんどのXAI文献は、AIシステムを説明する方法に焦点を当てているが、AIシステムを改善するためにXAIメソッドをどのように活用するかについては、あまり注目されていない。
論文 参考訳(メタデータ) (2023-06-09T10:38:26Z) - Human-Centric Multimodal Machine Learning: Recent Advances and Testbed
on AI-based Recruitment [66.91538273487379]
人間中心のアプローチでAIアプリケーションを開発する必要性には、ある程度のコンセンサスがある。
i)ユーティリティと社会的善、(ii)プライバシとデータ所有、(iii)透明性と説明責任、(iv)AIによる意思決定プロセスの公正性。
異種情報ソースに基づく現在のマルチモーダルアルゴリズムは、データ中の機密要素や内部バイアスによってどのように影響を受けるかを検討する。
論文 参考訳(メタデータ) (2023-02-13T16:44:44Z) - Invisible Users: Uncovering End-Users' Requirements for Explainable AI
via Explanation Forms and Goals [19.268536451101912]
非技術者のエンドユーザは、最先端の説明可能な人工知能(XAI)技術のサイレントで目に見えないユーザです。
それらのAI説明可能性に対する要求と要求は、XAI技術の設計と評価には組み込まれていない。
これにより、XAI技術は、医療、刑事司法、金融、自動運転システムといった、高額な応用において非効率または有害である。
論文 参考訳(メタデータ) (2023-02-10T19:35:57Z) - Towards Human Cognition Level-based Experiment Design for Counterfactual
Explanations (XAI) [68.8204255655161]
XAI研究の重点は、より理解を深めるために、より実践的な説明アプローチに変わったようだ。
認知科学研究がXAIの進歩に大きく影響を与える可能性のある領域は、ユーザの知識とフィードバックを評価することである。
本研究では,異なる認知レベルの理解に基づく説明の生成と評価を実験する枠組みを提案する。
論文 参考訳(メタデータ) (2022-10-31T19:20:22Z) - Towards Human-centered Explainable AI: A Survey of User Studies for
Model Explanations [19.6851366307368]
我々は過去5年間に人間によるXAI評価で97コア論文を特定し分析してきた。
我々の研究は、XAIがレコメンダシステムなど特定のアプリケーション領域で急速に普及していることを示している。
我々は,XAI研究者や実践者を対象としたユーザスタディの設計と実施に関する実践的ガイドラインを提案する。
論文 参考訳(メタデータ) (2022-10-20T20:53:00Z) - Connecting Algorithmic Research and Usage Contexts: A Perspective of
Contextualized Evaluation for Explainable AI [65.44737844681256]
説明可能なAI(XAI)を評価する方法に関するコンセンサスの欠如は、この分野の進歩を妨げる。
このギャップを埋める一つの方法は、異なるユーザ要求を考慮に入れた評価方法を開発することである、と我々は主張する。
論文 参考訳(メタデータ) (2022-06-22T05:17:33Z) - Counterfactual Explanations as Interventions in Latent Space [62.997667081978825]
反現実的な説明は、望ましい結果を達成するために変更が必要な機能のセットをエンドユーザに提供することを目的としています。
現在のアプローチでは、提案された説明を達成するために必要な行動の実現可能性を考慮することはめったにない。
本稿では,非現実的説明を生成する手法として,潜時空間における干渉としての対実的説明(CEILS)を提案する。
論文 参考訳(メタデータ) (2021-06-14T20:48:48Z) - A general framework for scientifically inspired explanations in AI [76.48625630211943]
我々は、AIシステムの説明を実装可能な一般的なフレームワークの理論的基盤として、科学的説明の構造の概念をインスタンス化する。
このフレームワークは、AIシステムの"メンタルモデル"を構築するためのツールを提供することを目的としている。
論文 参考訳(メタデータ) (2020-03-02T10:32:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。