論文の概要: Efficient Parametric Approximations of Neural Network Function Space
Distance
- arxiv url: http://arxiv.org/abs/2302.03519v2
- Date: Sun, 28 May 2023 16:31:33 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-31 01:35:48.924165
- Title: Efficient Parametric Approximations of Neural Network Function Space
Distance
- Title(参考訳): ニューラルネットワーク関数空間距離の効率的なパラメトリック近似
- Authors: Nikita Dhawan, Sicong Huang, Juhan Bae, Roger Grosse
- Abstract要約: モデルパラメータとトレーニングデータの重要な特性をコンパクトに要約して、データセット全体を保存または/または反復することなく後で使用できるようにすることが、しばしば有用である。
我々は,FSD(Function Space Distance)をトレーニングセット上で推定することを検討する。
本稿では、線形化活性化TRick (LAFTR) を提案し、ReLUニューラルネットワークに対するFSDの効率的な近似を導出する。
- 参考スコア(独自算出の注目度): 6.117371161379209
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: It is often useful to compactly summarize important properties of model
parameters and training data so that they can be used later without storing
and/or iterating over the entire dataset. As a specific case, we consider
estimating the Function Space Distance (FSD) over a training set, i.e. the
average discrepancy between the outputs of two neural networks. We propose a
Linearized Activation Function TRick (LAFTR) and derive an efficient
approximation to FSD for ReLU neural networks. The key idea is to approximate
the architecture as a linear network with stochastic gating. Despite requiring
only one parameter per unit of the network, our approach outcompetes other
parametric approximations with larger memory requirements. Applied to continual
learning, our parametric approximation is competitive with state-of-the-art
nonparametric approximations, which require storing many training examples.
Furthermore, we show its efficacy in estimating influence functions accurately
and detecting mislabeled examples without expensive iterations over the entire
dataset.
- Abstract(参考訳): モデルパラメータとトレーニングデータの重要な特性をコンパクトに要約して、データセット全体の保存と/または反復することなく、後で使用できるようにすることがしばしば有用である。
具体的には、トレーニングセット上の関数空間距離(fsd)、すなわち2つのニューラルネットワークの出力間の平均不一致を推定することを検討する。
本稿では,線形化アクティベーション関数トリック(laftr)を提案し,reluニューラルネットワークに対するfsdの効率的な近似を導出する。
鍵となるアイデアは、統計的ゲーティングを伴う線形ネットワークとしてアーキテクチャを近似することである。
ネットワーク単位あたりのパラメータは1つしかないが、より大きなメモリ要件を持つ他のパラメトリック近似よりも優れている。
連続学習に適用すると、パラメトリック近似は最先端の非パラメトリック近似と競合し、多くのトレーニング例を格納する必要がある。
さらに,影響関数を精度良く推定し,データセット全体にわたるコストのかかる反復を伴わない誤記例の検出に有効性を示す。
関連論文リスト
- Just How Flexible are Neural Networks in Practice? [89.80474583606242]
ニューラルネットワークは、パラメータを持つ少なくとも多くのサンプルを含むトレーニングセットに適合できると広く信じられている。
しかし実際には、勾配や正規化子など、柔軟性を制限したトレーニング手順によるソリューションしか見つからない。
論文 参考訳(メタデータ) (2024-06-17T12:24:45Z) - Heterogenous Memory Augmented Neural Networks [84.29338268789684]
ニューラルネットワークのための新しいヘテロジニアスメモリ拡張手法を提案する。
学習可能なメモリトークンをアテンション機構付きで導入することにより、膨大な計算オーバーヘッドを伴わずに性能を効果的に向上させることができる。
In-distriion (ID) と Out-of-distriion (OOD) の両方の条件下での様々な画像およびグラフベースのタスクに対するアプローチを示す。
論文 参考訳(メタデータ) (2023-10-17T01:05:28Z) - Provable Data Subset Selection For Efficient Neural Network Training [73.34254513162898]
本稿では,任意の放射基底関数ネットワーク上での入力データの損失を近似する,emphRBFNNのコアセットを構成するアルゴリズムについて紹介する。
次に、一般的なネットワークアーキテクチャやデータセット上で、関数近似とデータセットサブセットの選択に関する経験的評価を行う。
論文 参考訳(メタデータ) (2023-03-09T10:08:34Z) - Learning to Learn with Generative Models of Neural Network Checkpoints [71.06722933442956]
ニューラルネットワークのチェックポイントのデータセットを構築し,パラメータの生成モデルをトレーニングする。
提案手法は,幅広い損失プロンプトに対するパラメータの生成に成功している。
我々は、教師付きおよび強化学習における異なるニューラルネットワークアーキテクチャとタスクに本手法を適用した。
論文 参考訳(メタデータ) (2022-09-26T17:59:58Z) - One-Pass Learning via Bridging Orthogonal Gradient Descent and Recursive
Least-Squares [8.443742714362521]
我々は,従来のデータポイントの予測にほとんど変化しない方向にパラメータを変更しながら,すべての新しいデータポイントに完全に適合するワンパス学習アルゴリズムを開発した。
我々のアルゴリズムは、インクリメンタル・プリンシパル・コンポーネント分析(IPCA)を用いてストリーミングデータの構造を利用して、メモリを効率的に利用する。
本実験では,提案手法の有効性をベースラインと比較した。
論文 参考訳(メタデータ) (2022-07-28T02:01:31Z) - A Free Lunch with Influence Functions? Improving Neural Network
Estimates with Concepts from Semiparametric Statistics [41.99023989695363]
ニューラルネットワークや機械学習アルゴリズムの改善に使用される半パラメトリック理論の可能性を探る。
本稿では,単一アーキテクチャを用いてアンサンブルの柔軟性と多様性を求めるニューラルネットワーク手法であるMultiNetを提案する。
論文 参考訳(メタデータ) (2022-02-18T09:35:51Z) - Multi-fidelity Bayesian Neural Networks: Algorithms and Applications [0.0]
本稿では,可変忠実度の雑音データを用いて訓練できるベイズ型ニューラルネットワーク(BNN)を提案する。
関数近似の学習や、偏微分方程式(PDE)に基づく逆問題の解法に応用する。
論文 参考訳(メタデータ) (2020-12-19T02:03:53Z) - Facilitate the Parametric Dimension Reduction by Gradient Clipping [1.9671123873378715]
我々は、ニューラルネットワークのトレーニングにより、非パラメトリックからパラメトリックへ、よく知られた次元削減手法であるt分散隣接埋め込み(t-SNE)を拡張した。
本手法は, 一般化を楽しみながら, 非パラメトリックt-SNEと互換性のある埋め込み品質を実現する。
論文 参考訳(メタデータ) (2020-09-30T01:21:22Z) - Communication-Efficient Distributed Stochastic AUC Maximization with
Deep Neural Networks [50.42141893913188]
本稿では,ニューラルネットワークを用いた大規模AUCのための分散変数について検討する。
我々のモデルは通信ラウンドをはるかに少なくし、理論上はまだ多くの通信ラウンドを必要としています。
いくつかのデータセットに対する実験は、我々の理論の有効性を示し、我々の理論を裏付けるものである。
論文 参考訳(メタデータ) (2020-05-05T18:08:23Z) - Understanding the Effects of Data Parallelism and Sparsity on Neural
Network Training [126.49572353148262]
ニューラルネットワークトレーニングにおける2つの要因として,データ並列性と疎性について検討する。
有望なメリットにもかかわらず、ニューラルネットワークトレーニングに対する彼らの影響を理解することは、依然として明白である。
論文 参考訳(メタデータ) (2020-03-25T10:49:22Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。