Learning to cooperatively estimate road surface friction
- URL: http://arxiv.org/abs/2302.03560v1
- Date: Tue, 7 Feb 2023 16:14:39 GMT
- Title: Learning to cooperatively estimate road surface friction
- Authors: Jens-Patrick Langstand, Maben Rabi
- Abstract summary: We present a system for estimating the friction of the pavement surface at any curved road section.
We arrive at a consensus estimate based on data from vehicles that have recently passed through that section.
To keep costs down, we depend only on standard automotive sensors.
- Score: 0.0
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We present a system for estimating the friction of the pavement surface at
any curved road section, by arriving at a consensus estimate, based on data
from vehicles that have recently passed through that section. This estimate can
help following vehicles. To keep costs down, we depend only on standard
automotive sensors, such as the IMU, and sensors for the steering angle and
wheel speeds. Our system's workflow consists of: (i) processing of measurements
from existing vehicular sensors, to implement a virtual sensor that captures
the effect of low friction on the vehicle, (ii) transmitting short kinematic
summaries from vehicles to a road side unit (RSU), using V2X communication, and
(iii) estimating the friction coefficients, by running a machine learning
regressor at the RSU, on summaries from individual vehicles, and then combining
several such estimates.
In designing and implementing our system over a road network, we face two key
questions: (i) should each individual road section have a local friction
coefficient regressor, or can we use a global regressor that covers all the
possible road sections? and (ii) how accurate are the resulting regressor
estimates? We test the performance of design variations of our solution, using
simulations on the commercial package Dyna4. We consider a single vehicle type
with varying levels of tyre wear, and a range of road friction coefficients. We
find that: (a) only a marginal loss of accuracy is incurred in using a global
regressor as compared to local regressors, (b) the consensus estimate at the
RSU has a worst case error of about ten percent, if the combination is based on
at least fifty recently passed vehicles, and (c) our regressors have root mean
square (RMS) errors that are less than five percent. The RMS error rate of our
system is half as that of a commercial friction estimation service.
Related papers
- A V2X-based Privacy Preserving Federated Measuring and Learning System [0.0]
We propose a federated measurement and learning system that provides real-time data to fellow vehicles over Vehicle-to-Vehicle (V2V) communication.
We also operate a federated learning scheme over the Vehicle-to-Network (V2N) link to create a predictive model of the transportation network.
Results indicate that the proposed FL scheme improves learning performance and prevents eavesdropping at the aggregator server side.
arXiv Detail & Related papers (2024-01-24T23:11:11Z) - DeepAccident: A Motion and Accident Prediction Benchmark for V2X
Autonomous Driving [76.29141888408265]
We propose a large-scale dataset containing diverse accident scenarios that frequently occur in real-world driving.
The proposed DeepAccident dataset includes 57K annotated frames and 285K annotated samples, approximately 7 times more than the large-scale nuScenes dataset.
arXiv Detail & Related papers (2023-04-03T17:37:00Z) - Inverting the Fundamental Diagram and Forecasting Boundary Conditions:
How Machine Learning Can Improve Macroscopic Models for Traffic Flow [0.0]
We consider a dataset with flux and velocity data of vehicles moving on a highway, collected by fixed sensors and classified by lane and by class of vehicle.
We extrapolate two important pieces of information: 1) if congestion is appearing under the sensor, and 2) the total amount of vehicles which is going to pass under the sensor in the next future.
These pieces of information are then used to improve the accuracy of an LWR-based first-order multi-class model describing the dynamics of traffic flow between sensors.
arXiv Detail & Related papers (2023-03-21T11:07:19Z) - Learning Position From Vehicle Vibration Using an Inertial Measurement Unit [2.1213500139850012]
This paper presents a novel approach to vehicle positioning that operates without reliance on the global navigation satellite system (GNSS)
Traditional approaches are vulnerable to interference in certain environments, rendering them unreliable in situations such as urban canyons, under flyovers, or in low reception areas.
This study proposes a vehicle positioning method based on learning the road signature from accelerometer and gyroscope measurements obtained by an inertial measurement unit (IMU) sensor.
arXiv Detail & Related papers (2023-03-06T18:55:00Z) - Edge-Aided Sensor Data Sharing in Vehicular Communication Networks [8.67588704947974]
We consider sensor data sharing and fusion in a vehicular network with both, vehicle-to-infrastructure and vehicle-to-vehicle communication.
We propose a method, named Bidirectional Feedback Noise Estimation (BiFNoE), in which an edge server collects and caches sensor measurement data from vehicles.
We show that the perception accuracy is on average improved by around 80 % with only 12 kbps uplink and 28 kbps downlink bandwidth.
arXiv Detail & Related papers (2022-06-17T16:30:56Z) - An Intelligent Self-driving Truck System For Highway Transportation [81.12838700312308]
In this paper, we introduce an intelligent self-driving truck system.
Our presented system consists of three main components, 1) a realistic traffic simulation module for generating realistic traffic flow in testing scenarios, 2) a high-fidelity truck model which is designed and evaluated for mimicking real truck response in real-world deployment.
We also deploy our proposed system on a real truck and conduct real world experiments which shows our system's capacity of mitigating sim-to-real gap.
arXiv Detail & Related papers (2021-12-31T04:54:13Z) - Real Time Monocular Vehicle Velocity Estimation using Synthetic Data [78.85123603488664]
We look at the problem of estimating the velocity of road vehicles from a camera mounted on a moving car.
We propose a two-step approach where first an off-the-shelf tracker is used to extract vehicle bounding boxes and then a small neural network is used to regress the vehicle velocity.
arXiv Detail & Related papers (2021-09-16T13:10:27Z) - An Experimental Urban Case Study with Various Data Sources and a Model
for Traffic Estimation [65.28133251370055]
We organize an experimental campaign with video measurement in an area within the urban network of Zurich, Switzerland.
We focus on capturing the traffic state in terms of traffic flow and travel times by ensuring measurements from established thermal cameras.
We propose a simple yet efficient Multiple Linear Regression (MLR) model to estimate travel times with fusion of various data sources.
arXiv Detail & Related papers (2021-08-02T08:13:57Z) - Data-Driven Intersection Management Solutions for Mixed Traffic of
Human-Driven and Connected and Automated Vehicles [0.0]
This dissertation proposes two solutions for urban traffic control in the presence of connected and automated vehicles.
First, a centralized platoon-based controller is proposed for the cooperative intersection management problem.
Second, a data-driven approach is proposed for adaptive signal control in the presence of connected vehicles.
arXiv Detail & Related papers (2020-12-10T01:44:45Z) - ParkPredict: Motion and Intent Prediction of Vehicles in Parking Lots [65.33650222396078]
We develop a parking lot environment and collect a dataset of human parking maneuvers.
We compare a multi-modal Long Short-Term Memory (LSTM) prediction model and a Convolution Neural Network LSTM (CNN-LSTM) to a physics-based Extended Kalman Filter (EKF) baseline.
Our results show that 1) intent can be estimated well (roughly 85% top-1 accuracy and nearly 100% top-3 accuracy with the LSTM and CNN-LSTM model); 2) knowledge of the human driver's intended parking spot has a major impact on predicting parking trajectory; and 3) the semantic representation of the environment
arXiv Detail & Related papers (2020-04-21T20:46:32Z) - Reinforcement Learning Based Vehicle-cell Association Algorithm for
Highly Mobile Millimeter Wave Communication [53.47785498477648]
This paper investigates the problem of vehicle-cell association in millimeter wave (mmWave) communication networks.
We first formulate the user state (VU) problem as a discrete non-vehicle association optimization problem.
The proposed solution achieves up to 15% gains in terms sum of user complexity and 20% reduction in VUE compared to several baseline designs.
arXiv Detail & Related papers (2020-01-22T08:51:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.