論文の概要: Exploring quantum mechanical advantage for reservoir computing
- arxiv url: http://arxiv.org/abs/2302.03595v2
- Date: Thu, 11 May 2023 12:04:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-05-12 18:10:41.283145
- Title: Exploring quantum mechanical advantage for reservoir computing
- Title(参考訳): 貯水池計算における量子力学的利点の探索
- Authors: Niclas G\"otting, Frederik Lohof, Christopher Gies
- Abstract要約: 量子貯水池の量子特性と線形短期記憶性能の関連性を確立する。
貯水池における高い絡み合いは,より複雑な貯水池力学の前提条件であることがわかった。
本稿では,物理量子貯水池の性能に及ぼすデファスティングの影響について論じる。
- 参考スコア(独自算出の注目度): 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Quantum reservoir computing is an emerging field in machine learning with
quantum systems. While classical reservoir computing has proven to be a capable
concept of enabling machine learning on real, complex dynamical systems with
many degrees of freedom, the advantage of its quantum analogue is yet to be
fully explored. Here, we establish a link between quantum properties of a
quantum reservoir, namely entanglement and its occupied phase space dimension,
and its linear short-term memory performance. We find that a high degree of
entanglement in the reservoir is a prerequisite for a more complex reservoir
dynamics that is key to unlocking the exponential phase space and higher
short-term memory capacity. We quantify these relations and discuss the effect
of dephasing in the performance of physical quantum reservoirs.
- Abstract(参考訳): 量子貯水池コンピューティングは、量子システムを用いた機械学習の新たな分野である。
古典的リザーバコンピューティングは、多くの自由度を持つ現実の複雑な力学系で機械学習を可能にする有能な概念であることが証明されているが、量子アナログの利点はまだ十分に検討されていない。
そこで本研究では,量子リザーバの量子特性,すなわちエンタングルメントとその占有位相空間次元とのリンクと,その線形短期記憶性能を定式化する。
貯水池内の高次絡み合いは,指数関数的な位相空間を解き放ち,短期記憶容量を増大させる鍵となる,より複雑な貯水池力学の前提条件であることがわかった。
これらの関係を定量化し、物理量子貯水池の性能を低下させる効果について論じる。
関連論文リスト
- Efficient Learning for Linear Properties of Bounded-Gate Quantum Circuits [63.733312560668274]
d可変RZゲートとG-dクリフォードゲートを含む量子回路を与えられた場合、学習者は純粋に古典的な推論を行い、その線形特性を効率的に予測できるだろうか?
我々は、d で線形にスケーリングするサンプルの複雑さが、小さな予測誤差を達成するのに十分であり、対応する計算の複雑さは d で指数関数的にスケールすることを証明する。
我々は,予測誤差と計算複雑性をトレードオフできるカーネルベースの学習モデルを考案し,多くの実践的な環境で指数関数からスケーリングへ移行した。
論文 参考訳(メタデータ) (2024-08-22T08:21:28Z) - Quantum data learning for quantum simulations in high-energy physics [55.41644538483948]
本研究では,高エネルギー物理における量子データ学習の実践的問題への適用性について検討する。
我々は、量子畳み込みニューラルネットワークに基づくアンサッツを用いて、基底状態の量子位相を認識できることを数値的に示す。
これらのベンチマークで示された非自明な学習特性の観察は、高エネルギー物理学における量子データ学習アーキテクチャのさらなる探求の動機となる。
論文 参考訳(メタデータ) (2023-06-29T18:00:01Z) - Configured Quantum Reservoir Computing for Multi-Task Machine Learning [24.698475208639586]
量子貯水池計算のためのプログラム可能なNISQデバイスのダイナミクスについて検討する。
単一の構成の量子貯水池は、同時に複数のタスクを学習することができる。
量子貯水池における量子コヒーレンス(quantum coherence, 量子コヒーレンス, 量子コヒーレンス, 量子コヒーレンス, 量子コヒーレンス, 量子コヒーレンス, 量子コヒーレンス, 量子コヒーレンス, 量子コヒーレンス)
論文 参考訳(メタデータ) (2023-03-30T18:00:02Z) - Quantum Reservoir Computing for Speckle-Disorder Potentials [0.0]
量子貯水池コンピューティング(Quantum reservoir computing)は、情報を処理するメモリを持つ量子システムのダイナミクスを活用するために設計された機械学習手法である。
この手法はスピンの量子貯水池を用いて導入され、追加の量子系の基底状態エネルギーを求めるために応用される。
この課題は, 貯水池から抽出した可観測量に着目して解析し, 2ビット相関を用いた場合の強化効果を示す。
論文 参考訳(メタデータ) (2022-01-26T18:04:49Z) - Efficient criteria of quantumness for a large system of qubits [58.720142291102135]
大規模部分量子コヒーレント系の基本パラメータの無次元結合について論じる。
解析的および数値計算に基づいて、断熱進化中の量子ビット系に対して、そのような数を提案する。
論文 参考訳(メタデータ) (2021-08-30T23:50:05Z) - The Reservoir Learning Power across Quantum Many-Boby Localization
Transition [27.693120770022198]
一次元の長距離ランダム結合量子スピン鎖の学習力について検討する。
時系列学習タスクでは、量子多体ローカライズド(MBL)フェーズのシステムは長期記憶を保持する。
MBL-ergodic遷移付近で最適学習性能が得られた。
論文 参考訳(メタデータ) (2021-04-06T18:00:06Z) - Imaginary Time Propagation on a Quantum Chip [50.591267188664666]
想像時間における進化は、量子多体系の基底状態を見つけるための顕著な技術である。
本稿では,量子コンピュータ上での仮想時間伝搬を実現するアルゴリズムを提案する。
論文 参考訳(メタデータ) (2021-02-24T12:48:00Z) - Neuromorphic computing with a single qudit [0.0]
貯留層計算(Reservoir computing)は、多体量子系の高忠実度制御の代替である。
ここでは、単一のキューディット(d$D量子系)からなる貯水池を考える。
類似の古典システムと比較して,ロバストな性能上の優位性を示す。
論文 参考訳(メタデータ) (2021-01-27T22:35:22Z) - Information Scrambling in Computationally Complex Quantum Circuits [56.22772134614514]
53量子ビット量子プロセッサにおける量子スクランブルのダイナミクスを実験的に検討する。
演算子の拡散は効率的な古典的モデルによって捉えられるが、演算子の絡み合いは指数関数的にスケールされた計算資源を必要とする。
論文 参考訳(メタデータ) (2021-01-21T22:18:49Z) - Quantum reservoir computing: a reservoir approach toward quantum machine
learning on near-term quantum devices [0.8206877486958002]
量子貯水池コンピューティング(Quantum reservoir computing)は、時間的機械学習のように、量子システム上で複雑でリッチなダイナミクスを使用するアプローチである。
これらの量子機械学習アプローチはすべて、実験的に実現可能であり、最先端の量子デバイスに有効である。
論文 参考訳(メタデータ) (2020-11-10T04:45:52Z) - Quantum Non-equilibrium Many-Body Spin-Photon Systems [91.3755431537592]
論文は、非平衡状態における強相関量子系の量子力学に関するものである。
本研究の主な成果は, 臨界ダイナミクスのシグナチャ, 超ストロング結合のテストベッドとしての駆動ディックモデル, キブルズルーク機構の3つにまとめることができる。
論文 参考訳(メタデータ) (2020-07-23T19:05:56Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。