論文の概要: How to Trust Your Diffusion Model: A Convex Optimization Approach to
Conformal Risk Control
- arxiv url: http://arxiv.org/abs/2302.03791v3
- Date: Wed, 27 Dec 2023 14:48:05 GMT
- ステータス: 処理完了
- システム内更新日: 2023-12-29 23:28:19.025120
- Title: How to Trust Your Diffusion Model: A Convex Optimization Approach to
Conformal Risk Control
- Title(参考訳): 拡散モデルをどのように信頼するか:共形リスク制御への凸最適化アプローチ
- Authors: Jacopo Teneggi, Matthew Tivnan, J. Webster Stayman, Jeremias Sulam
- Abstract要約: 本稿では、画像から画像への回帰タスクに着目し、リスク制御予測セット(RCPS)の手順を一般化する。
提案手法は, 平均間隔長を最大化しつつ, 多次元リスク制御を可能にする新しい凸最適化手法に依存している。
本研究は,腹部の自然像とCTスキャンの2つの実世界の画像記述問題に対するアプローチについて述べる。
- 参考スコア(独自算出の注目度): 9.811982443156063
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Score-based generative modeling, informally referred to as diffusion models,
continue to grow in popularity across several important domains and tasks.
While they provide high-quality and diverse samples from empirical
distributions, important questions remain on the reliability and
trustworthiness of these sampling procedures for their responsible use in
critical scenarios. Conformal prediction is a modern tool to construct
finite-sample, distribution-free uncertainty guarantees for any black-box
predictor. In this work, we focus on image-to-image regression tasks and we
present a generalization of the Risk-Controlling Prediction Sets (RCPS)
procedure, that we term $K$-RCPS, which allows to $(i)$ provide entrywise
calibrated intervals for future samples of any diffusion model, and $(ii)$
control a certain notion of risk with respect to a ground truth image with
minimal mean interval length. Differently from existing conformal risk control
procedures, ours relies on a novel convex optimization approach that allows for
multidimensional risk control while provably minimizing the mean interval
length. We illustrate our approach on two real-world image denoising problems:
on natural images of faces as well as on computed tomography (CT) scans of the
abdomen, demonstrating state of the art performance.
- Abstract(参考訳): スコアベースの生成モデリングは、非公式に拡散モデルと呼ばれ、いくつかの重要なドメインやタスクで人気を高め続けている。
実験的な分布から高品質で多様なサンプルを提供する一方で、重要なシナリオにおけるこれらのサンプリング手順の信頼性と信頼性について重要な疑問が残る。
コンフォーマル予測は、ブラックボックス予測器に対して有限サンプルで分布のない不確実性を保証するための現代的なツールである。
本研究では、画像から画像への回帰タスクに焦点をあて、リスク制御予測セット(RCPS)の手順を一般化し、$K$-RCPSと呼ぶ。
(i)$は、任意の拡散モデルの将来のサンプルについてエントリーワイドな調整間隔を提供し、$
(ii)最小平均間隔の基底真理像に対するリスクの特定の概念を$に制御する。
既存の共形リスク制御手法と異なり,提案手法は平均区間長を最小化しつつ,多次元リスク制御を可能にする新しい凸最適化手法に依存している。
本研究は, 顔の自然画像と腹部のctスキャンの2つの実世界の画像特徴量問題に対するアプローチについて紹介する。
関連論文リスト
- Perturb, Attend, Detect and Localize (PADL): Robust Proactive Image Defense [5.150608040339816]
本稿では,クロスアテンションに基づく符号化と復号の対称スキームを用いて,画像固有の摂動を生成する新しいソリューションであるPADLを紹介する。
提案手法は,StarGANv2,BlendGAN,DiffAE,StableDiffusion,StableDiffusionXLなど,さまざまなアーキテクチャ設計の未確認モデルに一般化する。
論文 参考訳(メタデータ) (2024-09-26T15:16:32Z) - Model-Based Epistemic Variance of Values for Risk-Aware Policy Optimization [59.758009422067]
モデルベース強化学習における累積報酬に対する不確実性を定量化する問題を考察する。
我々は、解が値の真後分散に収束する新しい不確実性ベルマン方程式(UBE)を提案する。
本稿では,リスク・サーキングとリスク・アバース・ポリシー最適化のいずれにも適用可能な汎用ポリシー最適化アルゴリズムQ-Uncertainty Soft Actor-Critic (QU-SAC)を導入する。
論文 参考訳(メタデータ) (2023-12-07T15:55:58Z) - Image Inpainting via Tractable Steering of Diffusion Models [54.13818673257381]
本稿では,トラクタブル確率モデル(TPM)の制約後部を正確に,かつ効率的に計算する能力を活用することを提案する。
具体的には、確率回路(PC)と呼ばれる表現型TPMのクラスを採用する。
提案手法は, 画像の全体的な品質とセマンティックコヒーレンスを, 計算オーバーヘッドを10%加えるだけで一貫的に改善できることを示す。
論文 参考訳(メタデータ) (2023-11-28T21:14:02Z) - Uncertainty Quantification via Neural Posterior Principal Components [26.26693707762823]
不確実性定量化は、画像復元モデルの安全クリティカルドメインへの展開に不可欠である。
本稿では,入力画像の後方分布のPCをニューラルネットワークの単一前方通過で予測する手法を提案する。
提案手法は, インスタンス適応型不確実性方向を確実に伝達し, 後部サンプリングに匹敵する不確実性定量化を実現する。
論文 参考訳(メタデータ) (2023-09-27T09:51:29Z) - Multiclass Alignment of Confidence and Certainty for Network Calibration [10.15706847741555]
最近の研究では、ディープニューラルネットワーク(DNN)が過信的な予測を行う傾向があることが示されている。
予測平均信頼度と予測確実性(MACC)の多クラスアライメントとして知られる簡易なプラグアンドプレイ補助損失を特徴とする列車時キャリブレーション法を提案する。
本手法は,領域内および領域外両方のキャリブレーション性能を実現する。
論文 参考訳(メタデータ) (2023-09-06T00:56:24Z) - Denoising Diffusion Restoration Models [110.1244240726802]
Denoising Diffusion Restoration Models (DDRM) は効率的で教師なしの後方サンプリング手法である。
DDRMの汎用性を、超高解像度、デブロアリング、インペイント、カラー化のためにいくつかの画像データセットに示す。
論文 参考訳(メタデータ) (2022-01-27T20:19:07Z) - Deblurring via Stochastic Refinement [85.42730934561101]
条件付き拡散モデルに基づくブラインドデブロアリングのための代替フレームワークを提案する。
提案手法は,PSNRなどの歪み指標の点で競合する。
論文 参考訳(メタデータ) (2021-12-05T04:36:09Z) - Robustness via Uncertainty-aware Cycle Consistency [44.34422859532988]
非ペア画像-画像間の変換とは、対応する画像対を使わずに画像間マッピングを学習することを指す。
既存の手法は、外乱や予測の不確実性にロバスト性を明示的にモデル化することなく決定論的マッピングを学習する。
不確実性を考慮した一般化適応サイクル一貫性(UGAC)に基づく新しい確率的手法を提案する。
論文 参考訳(メタデータ) (2021-10-24T15:33:21Z) - PDC-Net+: Enhanced Probabilistic Dense Correspondence Network [161.76275845530964]
高度確率密度対応ネットワーク(PDC-Net+)は、精度の高い高密度対応を推定できる。
我々は、堅牢で一般化可能な不確実性予測に適したアーキテクチャと強化されたトレーニング戦略を開発する。
提案手法は,複数の挑戦的幾何マッチングと光学的フローデータセットに対して,最先端の結果を得る。
論文 参考訳(メタデータ) (2021-09-28T17:56:41Z) - Uncertainty-aware Generalized Adaptive CycleGAN [44.34422859532988]
unpaired image-to-image translationは、教師なしの方法で画像ドメイン間のマッピングを学ぶことを指す。
既存の手法はしばしば、外れ値への堅牢性や予測不確実性を明示的にモデル化せずに決定論的マッピングを学習する。
Uncertainty-aware Generalized Adaptive Cycle Consistency (UGAC) という新しい確率論的手法を提案する。
論文 参考訳(メタデータ) (2021-02-23T15:22:35Z) - Trust but Verify: Assigning Prediction Credibility by Counterfactual
Constrained Learning [123.3472310767721]
予測信頼性尺度は統計学と機械学習において基本的なものである。
これらの措置は、実際に使用される多種多様なモデルを考慮に入れるべきである。
この研究で開発されたフレームワークは、リスクフィットのトレードオフとして信頼性を表現している。
論文 参考訳(メタデータ) (2020-11-24T19:52:38Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。