TetCNN: Convolutional Neural Networks on Tetrahedral Meshes
- URL: http://arxiv.org/abs/2302.03830v1
- Date: Wed, 8 Feb 2023 01:52:48 GMT
- Title: TetCNN: Convolutional Neural Networks on Tetrahedral Meshes
- Authors: Mohammad Farazi, Zhangsihao Yang, Wenhui Zhu, Peijie Qiu, and Yalin
Wang
- Abstract summary: Convolutional neural networks (CNN) have been broadly studied on images, videos, graphs, and triangular meshes.
We introduce a novel interpretable graph CNN framework for the tetrahedral mesh structure.
Inspired by ChebyNet, our model exploits the volumetric Laplace-Beltrami Operator (LBO) to define filters over commonly used graph Laplacian.
- Score: 2.952111139469156
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Convolutional neural networks (CNN) have been broadly studied on images,
videos, graphs, and triangular meshes. However, it has seldom been studied on
tetrahedral meshes. Given the merits of using volumetric meshes in applications
like brain image analysis, we introduce a novel interpretable graph CNN
framework for the tetrahedral mesh structure. Inspired by ChebyNet, our model
exploits the volumetric Laplace-Beltrami Operator (LBO) to define filters over
commonly used graph Laplacian which lacks the Riemannian metric information of
3D manifolds. For pooling adaptation, we introduce new objective functions for
localized minimum cuts in the Graclus algorithm based on the LBO. We employ a
piece-wise constant approximation scheme that uses the clustering assignment
matrix to estimate the LBO on sampled meshes after each pooling. Finally,
adapting the Gradient-weighted Class Activation Mapping algorithm for
tetrahedral meshes, we use the obtained heatmaps to visualize discovered
regions-of-interest as biomarkers. We demonstrate the effectiveness of our
model on cortical tetrahedral meshes from patients with Alzheimer's disease, as
there is scientific evidence showing the correlation of cortical thickness to
neurodegenerative disease progression. Our results show the superiority of our
LBO-based convolution layer and adapted pooling over the conventionally used
unitary cortical thickness, graph Laplacian, and point cloud representation.
Related papers
- Product Manifold Representations for Learning on Biological Pathways [13.0916239254532]
We investigate the effects of embedding pathway graphs in non-Euclidean mixed-curvature spaces.
We train a supervised model using the learned node embeddings to predict missing protein-protein interactions in pathway graphs.
We find large reductions in distortion and boosts on in-distribution edge prediction performance as a result of using mixed-curvature embeddings.
arXiv Detail & Related papers (2024-01-27T18:46:19Z) - GNN-LoFI: a Novel Graph Neural Network through Localized Feature-based
Histogram Intersection [51.608147732998994]
Graph neural networks are increasingly becoming the framework of choice for graph-based machine learning.
We propose a new graph neural network architecture that substitutes classical message passing with an analysis of the local distribution of node features.
arXiv Detail & Related papers (2024-01-17T13:04:23Z) - Geometric Graph Filters and Neural Networks: Limit Properties and
Discriminability Trade-offs [122.06927400759021]
We study the relationship between a graph neural network (GNN) and a manifold neural network (MNN) when the graph is constructed from a set of points sampled from the manifold.
We prove non-asymptotic error bounds showing that convolutional filters and neural networks on these graphs converge to convolutional filters and neural networks on the continuous manifold.
arXiv Detail & Related papers (2023-05-29T08:27:17Z) - Anisotropic Multi-Scale Graph Convolutional Network for Dense Shape
Correspondence [3.45989531033125]
This paper studies 3D dense shape correspondence, a key shape analysis application in computer vision and graphics.
We introduce a novel hybrid geometric deep learning-based model that learns geometrically meaningful and discretization-independent features.
The resulting correspondence maps show state-of-the-art performance on the benchmark datasets.
arXiv Detail & Related papers (2022-10-17T22:40:50Z) - Learnable Filters for Geometric Scattering Modules [64.03877398967282]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2022-08-15T22:30:07Z) - Interpolation-based Correlation Reduction Network for Semi-Supervised
Graph Learning [49.94816548023729]
We propose a novel graph contrastive learning method, termed Interpolation-based Correlation Reduction Network (ICRN)
In our method, we improve the discriminative capability of the latent feature by enlarging the margin of decision boundaries.
By combining the two settings, we extract rich supervision information from both the abundant unlabeled nodes and the rare yet valuable labeled nodes for discnative representation learning.
arXiv Detail & Related papers (2022-06-06T14:26:34Z) - Invertible Neural Networks versus MCMC for Posterior Reconstruction in
Grazing Incidence X-Ray Fluorescence [0.3232625980782302]
We propose to reconstruct the posterior parameter distribution given a noisy measurement generated by the forward model by an appropriately learned invertible neural network.
We demonstrate by numerical comparisons that our method can compete with established Markov Chain Monte Carlo approaches, while being more efficient and flexible in applications.
arXiv Detail & Related papers (2021-02-05T14:17:59Z) - Spatio-Temporal Inception Graph Convolutional Networks for
Skeleton-Based Action Recognition [126.51241919472356]
We design a simple and highly modularized graph convolutional network architecture for skeleton-based action recognition.
Our network is constructed by repeating a building block that aggregates multi-granularity information from both the spatial and temporal paths.
arXiv Detail & Related papers (2020-11-26T14:43:04Z) - Data-Driven Learning of Geometric Scattering Networks [74.3283600072357]
We propose a new graph neural network (GNN) module based on relaxations of recently proposed geometric scattering transforms.
Our learnable geometric scattering (LEGS) module enables adaptive tuning of the wavelets to encourage band-pass features to emerge in learned representations.
arXiv Detail & Related papers (2020-10-06T01:20:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.