High-fidelity and Robust Geometric Quantum Gates that Outperform
Dynamical Ones
- URL: http://arxiv.org/abs/2001.05789v3
- Date: Sun, 6 Dec 2020 16:20:48 GMT
- Title: High-fidelity and Robust Geometric Quantum Gates that Outperform
Dynamical Ones
- Authors: Tao Chen and Zheng-Yuan Xue
- Abstract summary: We propose a general framework of geometric quantum computation with the integration of the time-optimal control technique.
Our scheme provides a promising alternative way towards scalable fault-tolerant solid-state quantum computation.
- Score: 5.781900408390438
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Geometric phase is a promising element to induce high-fidelity and robust
quantum operations due to its built-in noise-resilience feature. Unfortunately,
its practical applications are usually circumscribed by requiring complex
interactions among multiple levels/qubits and the longer gate-time than the
corresponding dynamical ones. Here, we propose a general framework of geometric
quantum computation with the integration of the time-optimal control technique,
where the shortest smooth geometric path is found to realize accelerated
geometric quantum gates, and thus greatly decreases the gate errors induced by
both the decoherence effect and operational imperfections. Meanwhile, we
faithfully implement our idea on a scalable platform of a two-dimensional
superconducting transmon-qubit lattice, with simple and experimental accessible
interactions. In addition, numerical simulations show that our implemented
geometric gates possess higher fidelities and stronger robustness, which
outperform the best performance of the corresponding dynamical ones. Therefore,
our scheme provides a promising alternative way towards scalable fault-tolerant
solid-state quantum computation.
Related papers
- Comparative study of quantum error correction strategies for the heavy-hexagonal lattice [41.94295877935867]
Topological quantum error correction is a milestone in the scaling roadmap of quantum computers.
The square-lattice surface code has become the workhorse to address this challenge.
In some platforms, however, the connectivities are kept even lower in order to minimise gate errors.
arXiv Detail & Related papers (2024-02-03T15:28:27Z) - Nonadiabatic geometric quantum gates with on-demand trajectories [2.5539863252714636]
We propose a general protocol for constructing geometric quantum gates with on-demand trajectories.
Our scheme adopts reverse engineering of the target Hamiltonian using smooth pulses.
Because a particular geometric gate can be induced by various different trajectories, we can further optimize the gate performance.
arXiv Detail & Related papers (2024-01-20T06:57:36Z) - Quantum Gate Optimization for Rydberg Architectures in the Weak-Coupling
Limit [55.05109484230879]
We demonstrate machine learning assisted design of a two-qubit gate in a Rydberg tweezer system.
We generate optimal pulse sequences that implement a CNOT gate with high fidelity.
We show that local control of single qubit operations is sufficient for performing quantum computation on a large array of atoms.
arXiv Detail & Related papers (2023-06-14T18:24:51Z) - High-fidelity parallel entangling gates on a neutral atom quantum
computer [41.74498230885008]
We report the realization of two-qubit entangling gates with 99.5% fidelity on up to 60 atoms in parallel.
These advances lay the groundwork for large-scale implementation of quantum algorithms, error-corrected circuits, and digital simulations.
arXiv Detail & Related papers (2023-04-11T18:00:04Z) - Dynamical-Corrected Nonadiabatic Geometric Quantum Computation [9.941657239723108]
We present an effective geometric scheme combined with a general dynamical-corrected technique.
Our scheme represents a promising way to explore large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2023-02-08T16:18:09Z) - Error-Tolerant Geometric Quantum Control for Logical Qubits with Minimal
Resource [4.354697470999286]
We propose a new fast and robust geometric scheme, with the decoherence-free-subspace encoding, and present its physical implementation on superconducting quantum circuits.
Our scheme can consolidate both error suppression methods for logical-qubit control, which sheds light on the future large-scale quantum computation.
arXiv Detail & Related papers (2021-12-16T12:10:41Z) - Nonadiabatic geometric quantum computation with shortened path on
superconducting circuits [3.0726135239588164]
We present an effective scheme to find the shortest geometric path under the conventional conditions of geometric quantum computation.
High-fidelity and robust geometric gates can be realized by only single-loop evolution.
Our scheme is promising for large-scale fault-tolerant quantum computation.
arXiv Detail & Related papers (2021-11-02T08:03:38Z) - Realization of arbitrary doubly-controlled quantum phase gates [62.997667081978825]
We introduce a high-fidelity gate set inspired by a proposal for near-term quantum advantage in optimization problems.
By orchestrating coherent, multi-level control over three transmon qutrits, we synthesize a family of deterministic, continuous-angle quantum phase gates acting in the natural three-qubit computational basis.
arXiv Detail & Related papers (2021-08-03T17:49:09Z) - Nonadiabatic geometric quantum gates that are insensitive to
qubit-frequency drifts [8.750801670077806]
In the current implementation of nonadiabatic geometric phases, operational and/or random errors tend to destruct the conditions that induce geometric phases.
Here, we apply the path-design strategy to explain in detail why both configurations can realize universal quantum gates in a single-loop way.
Our scheme provides a promising way towards practical realization of high-fidelity and robust nonadiabatic geometric quantum gates.
arXiv Detail & Related papers (2021-03-16T12:05:45Z) - Experimental Realization of Nonadiabatic Holonomic Single-Qubit Quantum
Gates with Two Dark Paths in a Trapped Ion [41.36300605844117]
We show nonadiabatic holonomic single-qubit quantum gates on two dark paths in a trapped $171mathrmYb+$ ion based on four-level systems with resonant drives.
We find that nontrivial holonomic two-qubit quantum gates can also be realized within current experimental technologies.
arXiv Detail & Related papers (2021-01-19T06:57:50Z) - Simulating nonnative cubic interactions on noisy quantum machines [65.38483184536494]
We show that quantum processors can be programmed to efficiently simulate dynamics that are not native to the hardware.
On noisy devices without error correction, we show that simulation results are significantly improved when the quantum program is compiled using modular gates.
arXiv Detail & Related papers (2020-04-15T05:16:24Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.