論文の概要: Shared Information-Based Safe And Efficient Behavior Planning For
Connected Autonomous Vehicles
- arxiv url: http://arxiv.org/abs/2302.04321v1
- Date: Wed, 8 Feb 2023 20:31:41 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-10 17:33:03.853451
- Title: Shared Information-Based Safe And Efficient Behavior Planning For
Connected Autonomous Vehicles
- Title(参考訳): 共有情報に基づく安全かつ効率的な自律走行車の行動計画
- Authors: Songyang Han, Shanglin Zhou, Lynn Pepin, Jiangwei Wang, Caiwen Ding,
Fei Miao
- Abstract要約: 我々は、連結自動運転車のための統合情報共有と安全なマルチエージェント強化学習フレームワークを設計する。
まず、重畳畳み込み畳み込みニューラルネットワーク(CNN)を用いて、生画像とポイントクラウドのLIDARデータを各自動運転車でローカルに処理する。
次に、車両の局部観測とV2V通信を介して受信した情報の両方を利用する安全なアクター批判アルゴリズムを設計する。
- 参考スコア(独自算出の注目度): 6.896682830421197
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The recent advancements in wireless technology enable connected autonomous
vehicles (CAVs) to gather data via vehicle-to-vehicle (V2V) communication, such
as processed LIDAR and camera data from other vehicles. In this work, we design
an integrated information sharing and safe multi-agent reinforcement learning
(MARL) framework for CAVs, to take advantage of the extra information when
making decisions to improve traffic efficiency and safety. We first use weight
pruned convolutional neural networks (CNN) to process the raw image and point
cloud LIDAR data locally at each autonomous vehicle, and share CNN-output data
with neighboring CAVs. We then design a safe actor-critic algorithm that
utilizes both a vehicle's local observation and the information received via
V2V communication to explore an efficient behavior planning policy with safety
guarantees. Using the CARLA simulator for experiments, we show that our
approach improves the CAV system's efficiency in terms of average velocity and
comfort under different CAV ratios and different traffic densities. We also
show that our approach avoids the execution of unsafe actions and always
maintains a safe distance from other vehicles. We construct an
obstacle-at-corner scenario to show that the shared vision can help CAVs to
observe obstacles earlier and take action to avoid traffic jams.
- Abstract(参考訳): 近年の無線技術の発展により、コネクテッド・自動運転車(CAV)は、他の車両から処理されたLIDARやカメラデータなどの車両間通信(V2V)を介してデータを収集することができる。
本研究では,CAVのための統合情報共有と安全マルチエージェント強化学習(MARL)フレームワークを設計し,交通効率と安全性を向上させるための意思決定を行う際の余分な情報を活用する。
まず,重み付き畳み込みニューラルネットワーク(cnn)を用いて,各自律走行車両の生画像とクラウドlidarデータをローカルに処理し,cnn出力データを隣接キャビブと共有する。
次に,車両の局部観測とV2V通信による情報の両方を利用して,安全保証を伴う効率的な行動計画方針を探索する安全なアクタ批判アルゴリズムを設計する。
実験のためのcarlaシミュレータを用いて,提案手法は,キャビティ比と交通密度の異なる場合,平均速度と快適性の観点からcavシステムの効率を向上させる。
また,我々のアプローチは安全でないアクションの実行を回避し,常に他の車両から安全な距離を保っていることを示す。
我々は,共用視覚が早期に障害物を観測し,交通渋滞を避けるために行動を起こすのに役立つことを示すために,障害物回避シナリオを構築した。
関連論文リスト
- Enhanced Cooperative Perception for Autonomous Vehicles Using Imperfect Communication [0.24466725954625887]
本稿では,制約通信下での協調知覚(CP)の最適化を実現するための新しい手法を提案する。
私たちのアプローチの核心は、視覚範囲を拡大するために、利用可能なフロント車両のリストから最高のヘルパーを募集することだ。
本研究は,協調知覚の全体的な性能向上における2段階最適化プロセスの有効性を実証するものである。
論文 参考訳(メタデータ) (2024-04-10T15:37:15Z) - MSight: An Edge-Cloud Infrastructure-based Perception System for
Connected Automated Vehicles [58.461077944514564]
本稿では,自動走行車に特化して設計された最先端道路側認識システムであるMSightについて述べる。
MSightは、リアルタイムの車両検出、ローカライゼーション、トラッキング、短期的な軌道予測を提供する。
評価は、待ち時間を最小限にしてレーンレベルの精度を維持するシステムの能力を強調している。
論文 参考訳(メタデータ) (2023-10-08T21:32:30Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - A Survey of Federated Learning for Connected and Automated Vehicles [2.348805691644086]
コネクテッド・アンド・オートマチック・ビークルズ(CAV)は、自動車分野における新興技術の1つである。
フェデレートラーニング(FL)は、複数の車両との協調モデル開発を可能にするCAVの効果的なソリューションである。
論文 参考訳(メタデータ) (2023-03-19T14:44:37Z) - Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of
Connected Autonomous Vehicles in Challenging Scenarios [10.37986799561165]
通信技術はコネクテッド・自動運転車(CAV)間の協調を可能にする
CAVのための並列安全シールドを備えた制約付きマルチエージェント強化学習(MARL)フレームワークを提案する。
その結果,提案手法は難易度の高いシナリオにおいて,システムの安全性と効率を著しく向上させることがわかった。
論文 参考訳(メタデータ) (2022-10-05T14:39:07Z) - COOPERNAUT: End-to-End Driving with Cooperative Perception for Networked
Vehicles [54.61668577827041]
本稿では,車間認識を用いたエンドツーエンド学習モデルであるCOOPERNAUTを紹介する。
われわれのAutoCastSim実験は、我々の協調知覚駆動モデルが平均成功率を40%向上させることを示唆している。
論文 参考訳(メタデータ) (2022-05-04T17:55:12Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Fine-Grained Vehicle Perception via 3D Part-Guided Visual Data
Augmentation [77.60050239225086]
実画像中の車両に動的部品を付加した3次元自動車モデルによる効果的なトレーニングデータ生成プロセスを提案する。
私達のアプローチは人間の相互作用なしで完全に自動です。
VUS解析用マルチタスクネットワークとVHI解析用マルチストリームネットワークを提案する。
論文 参考訳(メタデータ) (2020-12-15T03:03:38Z) - Facilitating Connected Autonomous Vehicle Operations Using
Space-weighted Information Fusion and Deep Reinforcement Learning Based
Control [6.463332275753283]
本稿では、他の車両からのセンシングと接続機能を通じて収集されたデータを統合するディープ強化学習に基づくアプローチについて述べる。
CAVにおけるアルゴリズムの実装は、CAV運転操作に関連する安全性とモビリティを高めることが期待されている。
論文 参考訳(メタデータ) (2020-09-30T13:38:32Z) - V2VNet: Vehicle-to-Vehicle Communication for Joint Perception and
Prediction [74.42961817119283]
車両間通信(V2V)を用いて、自動運転車の知覚と運動予測性能を向上させる。
複数の車両から受信した情報をインテリジェントに集約することで、異なる視点から同じシーンを観察することができる。
論文 参考訳(メタデータ) (2020-08-17T17:58:26Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
我々は、コネクテッド・自動運転車のための情報共有型強化学習フレームワークを設計する。
提案手法は, 平均速度と快適性の観点から, CAV システムの効率性を向上させることができることを示す。
我々は,共用視覚が早期に障害物を観測し,交通渋滞を避けるために行動を起こすのに役立つことを示すために,障害物回避シナリオを構築した。
論文 参考訳(メタデータ) (2020-03-09T19:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。