論文の概要: Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of
Connected Autonomous Vehicles in Challenging Scenarios
- arxiv url: http://arxiv.org/abs/2210.02300v1
- Date: Wed, 5 Oct 2022 14:39:07 GMT
- ステータス: 処理完了
- システム内更新日: 2022-10-06 14:54:11.310277
- Title: Spatial-Temporal-Aware Safe Multi-Agent Reinforcement Learning of
Connected Autonomous Vehicles in Challenging Scenarios
- Title(参考訳): 時空間対応型安全マルチエージェント強化学習の課題と課題
- Authors: Zhili Zhang, Songyang Han, Jiangwei Wang, Fei Miao
- Abstract要約: 通信技術はコネクテッド・自動運転車(CAV)間の協調を可能にする
CAVのための並列安全シールドを備えた制約付きマルチエージェント強化学習(MARL)フレームワークを提案する。
その結果,提案手法は難易度の高いシナリオにおいて,システムの安全性と効率を著しく向上させることがわかった。
- 参考スコア(独自算出の注目度): 10.37986799561165
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Communication technologies enable coordination among connected and autonomous
vehicles (CAVs). However, it remains unclear how to utilize shared information
to improve the safety and efficiency of the CAV system. In this work, we
propose a framework of constrained multi-agent reinforcement learning (MARL)
with a parallel safety shield for CAVs in challenging driving scenarios. The
coordination mechanisms of the proposed MARL include information sharing and
cooperative policy learning, with Graph Convolutional Network (GCN)-Transformer
as a spatial-temporal encoder that enhances the agent's environment awareness.
The safety shield module with Control Barrier Functions (CBF)-based safety
checking protects the agents from taking unsafe actions. We design a
constrained multi-agent advantage actor-critic (CMAA2C) algorithm to train safe
and cooperative policies for CAVs. With the experiment deployed in the CARLA
simulator, we verify the effectiveness of the safety checking, spatial-temporal
encoder, and coordination mechanisms designed in our method by comparative
experiments in several challenging scenarios with the defined hazard vehicles
(HAZV). Results show that our proposed methodology significantly increases
system safety and efficiency in challenging scenarios.
- Abstract(参考訳): 通信技術は、コネクテッド・自動運転車(CAV)間の協調を可能にする。
しかし,CAVシステムの安全性と効率を向上させるために共有情報をどのように活用するかは,まだ不明である。
本研究では,運転シナリオにおけるキャビネットの並列安全シールドを用いた制約付きマルチエージェント強化学習(marl)の枠組みを提案する。
提案したMARLのコーディネーション機構には,情報共有と協調的な政策学習が含まれ,空間的時間的エンコーダとしてのGraph Convolutional Network (GCN)-Transformerがエージェントの環境意識を高める。
制御バリア関数(CBF)ベースの安全チェックを備えた安全シールドモジュールは、エージェントが安全でないアクションを取るのを防ぐ。
制約付きマルチエージェント・アドバンテージ・アクター・クリティカル(CMAA2C)アルゴリズムを設計し,CAVの安全・協調政策を訓練する。
CARLAシミュレータに実装した実験では, 安全チェック, 時空間エンコーダ, 調整機構の有効性を, 決定されたハザード車両 (HAZV) を用いたいくつかの挑戦シナリオで比較実験により検証した。
その結果,提案手法は課題シナリオにおいてシステム安全性と効率を著しく向上させることがわかった。
関連論文リスト
- OPTIMA: Optimized Policy for Intelligent Multi-Agent Systems Enables Coordination-Aware Autonomous Vehicles [9.41740133451895]
本研究は,協調自動運転タスクのための分散強化学習フレームワークOPTIMAを紹介する。
我々のゴールは、非常に複雑で混み合ったシナリオにおいて、CAVの汎用性と性能を改善することです。
論文 参考訳(メタデータ) (2024-10-09T03:28:45Z) - Towards Interactive and Learnable Cooperative Driving Automation: a Large Language Model-Driven Decision-Making Framework [79.088116316919]
コネクテッド・オートモービルズ(CAV)は世界中の道路試験を開始したが、複雑なシナリオにおける安全性と効率性はまだ十分ではない。
本稿では,対話型かつ学習可能なLLM駆動協調運転フレームワークCoDrivingLLMを提案する。
論文 参考訳(メタデータ) (2024-09-19T14:36:00Z) - Empowering Autonomous Driving with Large Language Models: A Safety Perspective [82.90376711290808]
本稿では,Large Language Models (LLM) の自律運転システムへの統合について検討する。
LLMは行動計画におけるインテリジェントな意思決定者であり、文脈的安全学習のための安全検証シールドを備えている。
適応型LLM条件モデル予測制御(MPC)と状態機械を用いたLLM対応対話型行動計画スキームという,シミュレーション環境における2つの重要な研究について述べる。
論文 参考訳(メタデータ) (2023-11-28T03:13:09Z) - A Counterfactual Safety Margin Perspective on the Scoring of Autonomous
Vehicles' Riskiness [52.27309191283943]
本稿では,異なるAVの行動のリスクを評価するためのデータ駆動型フレームワークを提案する。
本稿では,衝突を引き起こす可能性のある名目行動から最小限の偏差を示す,対実的安全マージンの概念を提案する。
論文 参考訳(メタデータ) (2023-08-02T09:48:08Z) - Convergence of Communications, Control, and Machine Learning for Secure
and Autonomous Vehicle Navigation [78.60496411542549]
接続された自動運転車(CAV)は、交通事故におけるヒューマンエラーを低減し、道路効率を向上し、様々なタスクを実行する。これらのメリットを享受するためには、CAVが目標とする目的地へ自律的にナビゲートする必要がある。
本稿では,通信理論,制御理論,機械学習の収束を利用して,効果的なCAVナビゲーションを実現する手法を提案する。
論文 参考訳(メタデータ) (2023-07-05T21:38:36Z) - Trust-Aware Resilient Control and Coordination of Connected and
Automated Vehicles [11.97553028903872]
敵の攻撃は安全違反を引き起こし、衝突や交通渋滞を引き起こす。
敵攻撃や非協力的CAVの影響を緩和する分散型レジリエンス制御・調整手法を提案する。
論文 参考訳(メタデータ) (2023-05-26T10:57:51Z) - Shared Information-Based Safe And Efficient Behavior Planning For
Connected Autonomous Vehicles [6.896682830421197]
我々は、連結自動運転車のための統合情報共有と安全なマルチエージェント強化学習フレームワークを設計する。
まず、重畳畳み込み畳み込みニューラルネットワーク(CNN)を用いて、生画像とポイントクラウドのLIDARデータを各自動運転車でローカルに処理する。
次に、車両の局部観測とV2V通信を介して受信した情報の両方を利用する安全なアクター批判アルゴリズムを設計する。
論文 参考訳(メタデータ) (2023-02-08T20:31:41Z) - Evaluating Model-free Reinforcement Learning toward Safety-critical
Tasks [70.76757529955577]
本稿では、国家安全RLの観点から、この領域における先行研究を再考する。
安全最適化と安全予測を組み合わせた共同手法であるUnrolling Safety Layer (USL)を提案する。
この領域のさらなる研究を容易にするため、我々は関連するアルゴリズムを統一パイプラインで再現し、SafeRL-Kitに組み込む。
論文 参考訳(メタデータ) (2022-12-12T06:30:17Z) - Transferable Deep Reinforcement Learning Framework for Autonomous
Vehicles with Joint Radar-Data Communications [69.24726496448713]
本稿では,AVの最適決定を支援するために,マルコフ決定プロセス(MDP)に基づくインテリジェントな最適化フレームワークを提案する。
そこで我々は,近年の深層強化学習技術を活用した効果的な学習アルゴリズムを開発し,AVの最適方針を見出す。
提案手法は,従来の深部強化学習手法と比較して,AVによる障害物ミス検出確率を最大67%削減することを示す。
論文 参考訳(メタデータ) (2021-05-28T08:45:37Z) - Smart and Secure CAV Networks Empowered by AI-Enabled Blockchain: Next
Frontier for Intelligent Safe-Driving Assessment [17.926728975133113]
コネクテッド・自動運転車(CAV)の安全運転状況の確保は、引き続き広く懸念されている。
アルゴリズム対応型intElligent Safe-Driven AssessmentmenT(BEST)の新たなフレームワークを提案し、スマートで信頼性の高いアプローチを提供します。
論文 参考訳(メタデータ) (2021-04-09T19:08:34Z) - A Multi-Agent Reinforcement Learning Approach For Safe and Efficient
Behavior Planning Of Connected Autonomous Vehicles [21.132777568170702]
我々は、コネクテッド・自動運転車のための情報共有型強化学習フレームワークを設計する。
提案手法は, 平均速度と快適性の観点から, CAV システムの効率性を向上させることができることを示す。
我々は,共用視覚が早期に障害物を観測し,交通渋滞を避けるために行動を起こすのに役立つことを示すために,障害物回避シナリオを構築した。
論文 参考訳(メタデータ) (2020-03-09T19:15:30Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。