Towards Fairer and More Efficient Federated Learning via
Multidimensional Personalized Edge Models
- URL: http://arxiv.org/abs/2302.04464v2
- Date: Thu, 27 Apr 2023 05:53:31 GMT
- Title: Towards Fairer and More Efficient Federated Learning via
Multidimensional Personalized Edge Models
- Authors: Yingchun Wang, Jingcai Guo, Jie Zhang, Song Guo, Weizhan Zhang,
Qinghua Zheng
- Abstract summary: Federated learning (FL) trains massive and geographically distributed edge data while maintaining privacy.
We propose a Customized Federated Learning (CFL) system to eliminate FL heterogeneity from multiple dimensions.
CFL tailors personalized models from the specially designed global model for each client jointly guided by an online trained model-search helper and a novel aggregation algorithm.
- Score: 36.84027517814128
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Federated learning (FL) is an emerging technique that trains massive and
geographically distributed edge data while maintaining privacy. However, FL has
inherent challenges in terms of fairness and computational efficiency due to
the rising heterogeneity of edges, and thus usually results in sub-optimal
performance in recent state-of-the-art (SOTA) solutions. In this paper, we
propose a Customized Federated Learning (CFL) system to eliminate FL
heterogeneity from multiple dimensions. Specifically, CFL tailors personalized
models from the specially designed global model for each client jointly guided
by an online trained model-search helper and a novel aggregation algorithm.
Extensive experiments demonstrate that CFL has full-stack advantages for both
FL training and edge reasoning and significantly improves the SOTA performance
w.r.t. model accuracy (up to 7.2% in the non-heterogeneous environment and up
to 21.8% in the heterogeneous environment), efficiency, and FL fairness.
Related papers
- Personalized Federated Learning with Adaptive Feature Aggregation and Knowledge Transfer [0.0]
Federated Learning (FL) is popular as a privacy-preserving machine learning paradigm for generating a single model on decentralized data.
We propose a new method personalized Federated learning with Adaptive Feature Aggregation and Knowledge Transfer (FedAFK)
We conduct extensive experiments on three datasets in two widely-used heterogeneous settings and show the superior performance of our proposed method over thirteen state-of-the-art baselines.
arXiv Detail & Related papers (2024-10-19T11:32:39Z) - On ADMM in Heterogeneous Federated Learning: Personalization, Robustness, and Fairness [16.595935469099306]
We propose FLAME, an optimization framework by utilizing the alternating direction method of multipliers (ADMM) to train personalized and global models.
Our theoretical analysis establishes the global convergence and two kinds of convergence rates for FLAME under mild assumptions.
Our experimental findings show that FLAME outperforms state-of-the-art methods in convergence and accuracy, and it achieves higher test accuracy under various attacks.
arXiv Detail & Related papers (2024-07-23T11:35:42Z) - Embracing Federated Learning: Enabling Weak Client Participation via Partial Model Training [21.89214794178211]
In Federated Learning (FL), clients may have weak devices that cannot train the full model or even hold it in their memory space.
We propose EmbracingFL, a general FL framework that allows all available clients to join the distributed training.
Our empirical study shows that EmbracingFL consistently achieves high accuracy as like all clients are strong, outperforming the state-of-the-art width reduction methods.
arXiv Detail & Related papers (2024-06-21T13:19:29Z) - Multi-level Personalized Federated Learning on Heterogeneous and Long-Tailed Data [10.64629029156029]
We introduce an innovative personalized Federated Learning framework, Multi-level Personalized Federated Learning (MuPFL)
MuPFL integrates three pivotal modules: Biased Activation Value Dropout (BAVD), Adaptive Cluster-based Model Update (ACMU) and Prior Knowledge-assisted Fine-tuning (PKCF)
Experiments on diverse real-world datasets show that MuPFL consistently outperforms state-of-the-art baselines, even under extreme non-i.i.d. and long-tail conditions.
arXiv Detail & Related papers (2024-05-10T11:52:53Z) - Efficient Personalized Federated Learning via Sparse Model-Adaptation [47.088124462925684]
Federated Learning (FL) aims to train machine learning models for multiple clients without sharing their own private data.
We propose pFedGate for efficient personalized FL by adaptively and efficiently learning sparse local models.
We show that pFedGate achieves superior global accuracy, individual accuracy and efficiency simultaneously over state-of-the-art methods.
arXiv Detail & Related papers (2023-05-04T12:21:34Z) - Personalized Federated Learning on Long-Tailed Data via Adversarial
Feature Augmentation [24.679535905451758]
PFL aims to learn personalized models for each client based on the knowledge across all clients in a privacy-preserving manner.
Existing PFL methods assume that the underlying global data across all clients are uniformly distributed without considering the long-tail distribution.
We propose Federated Learning with Adversarial Feature Augmentation (FedAFA) to address this joint problem in PFL.
arXiv Detail & Related papers (2023-03-27T13:00:20Z) - Automated Federated Learning in Mobile Edge Networks -- Fast Adaptation
and Convergence [83.58839320635956]
Federated Learning (FL) can be used in mobile edge networks to train machine learning models in a distributed manner.
Recent FL has been interpreted within a Model-Agnostic Meta-Learning (MAML) framework, which brings FL significant advantages in fast adaptation and convergence over heterogeneous datasets.
This paper addresses how much benefit MAML brings to FL and how to maximize such benefit over mobile edge networks.
arXiv Detail & Related papers (2023-03-23T02:42:10Z) - Vertical Semi-Federated Learning for Efficient Online Advertising [50.18284051956359]
Semi-VFL (Vertical Semi-Federated Learning) is proposed to achieve a practical industry application fashion for VFL.
We build an inference-efficient single-party student model applicable to the whole sample space.
New representation distillation methods are designed to extract cross-party feature correlations for both the overlapped and non-overlapped data.
arXiv Detail & Related papers (2022-09-30T17:59:27Z) - Disentangled Federated Learning for Tackling Attributes Skew via
Invariant Aggregation and Diversity Transferring [104.19414150171472]
Attributes skews the current federated learning (FL) frameworks from consistent optimization directions among the clients.
We propose disentangled federated learning (DFL) to disentangle the domain-specific and cross-invariant attributes into two complementary branches.
Experiments verify that DFL facilitates FL with higher performance, better interpretability, and faster convergence rate, compared with SOTA FL methods.
arXiv Detail & Related papers (2022-06-14T13:12:12Z) - Efficient Split-Mix Federated Learning for On-Demand and In-Situ
Customization [107.72786199113183]
Federated learning (FL) provides a distributed learning framework for multiple participants to collaborate learning without sharing raw data.
In this paper, we propose a novel Split-Mix FL strategy for heterogeneous participants that, once training is done, provides in-situ customization of model sizes and robustness.
arXiv Detail & Related papers (2022-03-18T04:58:34Z) - Fine-tuning Global Model via Data-Free Knowledge Distillation for
Non-IID Federated Learning [86.59588262014456]
Federated Learning (FL) is an emerging distributed learning paradigm under privacy constraint.
We propose a data-free knowledge distillation method to fine-tune the global model in the server (FedFTG)
Our FedFTG significantly outperforms the state-of-the-art (SOTA) FL algorithms and can serve as a strong plugin for enhancing FedAvg, FedProx, FedDyn, and SCAFFOLD.
arXiv Detail & Related papers (2022-03-17T11:18:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.