論文の概要: Toolformer: Language Models Can Teach Themselves to Use Tools
- arxiv url: http://arxiv.org/abs/2302.04761v1
- Date: Thu, 9 Feb 2023 16:49:57 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-10 15:06:46.239013
- Title: Toolformer: Language Models Can Teach Themselves to Use Tools
- Title(参考訳): Toolformer: 言語モデルを使ってツールを学べる
- Authors: Timo Schick, Jane Dwivedi-Yu, Roberto Dess\`i, Roberta Raileanu, Maria
Lomeli, Luke Zettlemoyer, Nicola Cancedda, Thomas Scialom
- Abstract要約: 言語モデル(LM)は、特に大規模において、いくつかの例やテキスト命令から新しいタスクを解く素晴らしい能力を示す。
LMは、シンプルなAPIを通じて外部ツールの使用を自覚し、両方の世界のベストを達成できることを示します。
Toolformerは、どのAPIを呼び出すか、いつ呼び出すか、どの引数を渡すか、結果を将来のトークン予測に最もうまく組み込む方法を訓練したモデルです。
- 参考スコア(独自算出の注目度): 62.04867424598204
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Language models (LMs) exhibit remarkable abilities to solve new tasks from
just a few examples or textual instructions, especially at scale. They also,
paradoxically, struggle with basic functionality, such as arithmetic or factual
lookup, where much simpler and smaller models excel. In this paper, we show
that LMs can teach themselves to use external tools via simple APIs and achieve
the best of both worlds. We introduce Toolformer, a model trained to decide
which APIs to call, when to call them, what arguments to pass, and how to best
incorporate the results into future token prediction. This is done in a
self-supervised way, requiring nothing more than a handful of demonstrations
for each API. We incorporate a range of tools, including a calculator, a Q\&A
system, two different search engines, a translation system, and a calendar.
Toolformer achieves substantially improved zero-shot performance across a
variety of downstream tasks, often competitive with much larger models, without
sacrificing its core language modeling abilities.
- Abstract(参考訳): 言語モデル(LM)は、特に大規模において、いくつかの例やテキスト命令から新しいタスクを解く素晴らしい能力を示す。
パラドックス的にも、算術や事実のルックアップといった基本的な機能に苦労し、もっとシンプルで小さなモデルが優れている。
本稿では,LMがシンプルなAPIを通じて外部ツールの使用を自覚し,両世界のベストを達成できることを示す。
これは、どのapiを呼び出すか、いつ呼び出すか、どの引数を渡すか、結果を将来のトークン予測にどのように組み込むかを決めるように訓練されたモデルです。
これは自己管理的な方法で行われ、各APIに対してほんの少しのデモしか必要としない。
計算機,Q&Aシステム,2つの異なる検索エンジン,翻訳システム,カレンダーなど,さまざまなツールが組み込まれています。
toolformerは、さまざまなダウンストリームタスクにおけるゼロショットパフォーマンスを大幅に改善し、コア言語モデリング能力を犠牲にすることなく、より大きなモデルと競合することが多い。
関連論文リスト
- VQA Training Sets are Self-play Environments for Generating Few-shot Pools [2.556825820539693]
本稿では,タスクメトリクスを報酬として計算環境を構築するために,既存のトレーニングセットを直接利用できる手法を提案する。
提案手法は、ゼロショットプロンプトから始まり、トレーニングセット上のタスクメトリックを最大化する少数ショット例を選択することにより、反復的にそれらを洗練する。
我々の実験では、GeminiがScreenAIのようなより小型で特殊なモデルを使って、トレーニングセットのパフォーマンスを反復的に改善する方法を実証している。
論文 参考訳(メタデータ) (2024-05-30T07:38:58Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - What Are Tools Anyway? A Survey from the Language Model Perspective [67.18843218893416]
言語モデル(LM)は強力だが、主にテキスト生成タスクに向いている。
LMが使用する外部プログラムとしてツールを統一的に定義する。
各種ツールの効率を実証的に検討した。
論文 参考訳(メタデータ) (2024-03-18T17:20:07Z) - ControlLLM: Augment Language Models with Tools by Searching on Graphs [97.62758830255002]
我々は,大規模言語モデル(LLM)が実世界のタスクを解くためのマルチモーダルツールを利用できる新しいフレームワークであるControlLLMを提案する。
フレームワークは,(1)複雑なタスクを明確なサブタスクに分割し,入力と出力を適切に定義したサブタスクに分解するtextittask Decomposer,(2)構築済みのツールグラフ上で最適なソリューションパスを探索する textitThoughts-on-Graph(ToG)パラダイム,(3)ソリューションパスを解釈して実行するリッチなツールボックスを備えた textitexecution Engine,の3つの主要なコンポーネントから構成される。
論文 参考訳(メタデータ) (2023-10-26T21:57:21Z) - Tool Documentation Enables Zero-Shot Tool-Usage with Large Language
Models [90.96816639172464]
大規模言語モデル(LLM)は、ツールの使用のデモを提供することで、新しいツールを使用するように教えられている。
デモよりも、ツールドキュメンテーションの使用、個々のツール使用方法の説明を推奨します。
論文 参考訳(メタデータ) (2023-08-01T17:21:38Z) - ToolLLM: Facilitating Large Language Models to Master 16000+ Real-world
APIs [104.37772295581088]
オープンソースの大規模言語モデル(LLM)、例えばLLaMAは、ツール使用能力に大きく制限されている。
データ構築、モデルトレーニング、評価を含む汎用ツールであるToolLLMを紹介する。
ツール使用のためのインストラクションチューニングフレームワークであるToolBenchを,ChatGPTを使って自動構築する。
論文 参考訳(メタデータ) (2023-07-31T15:56:53Z) - Making Language Models Better Tool Learners with Execution Feedback [36.30542737293863]
ツールは、人間が環境を理解し、形を変えることができる重要なインターフェースとして機能する。
既存のツール学習手法は、ツールを無差別に活用するために大きな言語モデルを誘導する。
ツール実行からのフィードバックを通じてモデルを継続的に学習することを可能にする2段階のエンドツーエンドフレームワークであるTool leaRning wIth exeCution fEedback (TRICE)を提案する。
論文 参考訳(メタデータ) (2023-05-22T14:37:05Z) - Code Generation Tools (Almost) for Free? A Study of Few-Shot,
Pre-Trained Language Models on Code [13.15617135394116]
大規模で事前訓練された言語モデルによるショットラーニングは、コードに関する質問に答える強力な方法だ。
本稿では,現在最先端の事前訓練済みの言語モデルであるCodexがこの目的をどの程度果たすかを検討する。
論文 参考訳(メタデータ) (2022-06-02T23:15:42Z) - TALM: Tool Augmented Language Models [28.483609366116525]
トランスフォーマーベース言語モデル(LM)は、様々なタスクにまたがるスケールによるパフォーマンス向上を示す。
本稿では,ツール拡張言語モデル(Tool Augmented Language Models,TALM)を提案する。
TALMは知識量の多いQAタスクと単純なツールによる推論指向の数学タスクの両方に強い性能を示す。
論文 参考訳(メタデータ) (2022-05-24T17:58:13Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。