論文の概要: Chain-of-Tools: Utilizing Massive Unseen Tools in the CoT Reasoning of Frozen Language Models
- arxiv url: http://arxiv.org/abs/2503.16779v1
- Date: Fri, 21 Mar 2025 01:26:12 GMT
- ステータス: 翻訳完了
- システム内更新日: 2025-03-24 14:58:34.418311
- Title: Chain-of-Tools: Utilizing Massive Unseen Tools in the CoT Reasoning of Frozen Language Models
- Title(参考訳): Chain-of-Tools: 凍結言語モデルのCoT推論における大規模未確認ツールの利用
- Authors: Mengsong Wu, Tong Zhu, Han Han, Xiang Zhang, Wenbiao Shao, Wenliang Chen,
- Abstract要約: ツール学習は、大きな言語モデル(LLM)の使用シナリオをさらに広げることができる。
本稿では,新しいツール学習手法であるChain-of-Toolsを提案する。
CoT推論でツール呼び出しを終了するために、フリーズLDMの強力なセマンティック表現機能をフル活用する。
- 参考スコア(独自算出の注目度): 8.573278807410507
- License:
- Abstract: Tool learning can further broaden the usage scenarios of large language models (LLMs). However most of the existing methods either need to finetune that the model can only use tools seen in the training data, or add tool demonstrations into the prompt with lower efficiency. In this paper, we present a new Tool Learning method Chain-of-Tools. It makes full use of the powerful semantic representation capability of frozen LLMs to finish tool calling in CoT reasoning with a huge and flexible tool pool which may contain unseen tools. Especially, to validate the effectiveness of our approach in the massive unseen tool scenario, we construct a new dataset SimpleToolQuestions. We conduct experiments on two numerical reasoning benchmarks (GSM8K-XL and FuncQA) and two knowledge-based question answering benchmarks (KAMEL and SimpleToolQuestions). Experimental results show that our approach performs better than the baseline. We also identify dimensions of the model output that are critical in tool selection, enhancing the model interpretability. Our code and data are available at: https://github.com/fairyshine/Chain-of-Tools .
- Abstract(参考訳): ツール学習は、大きな言語モデル(LLM)の使用シナリオをさらに広げることができる。
しかし、既存のほとんどのメソッドは、トレーニングデータに見られるツールしか使用できないことを微調整するか、より少ない効率でプロンプトにツールのデモを追加する必要がある。
本稿では,新しいツール学習手法であるChain-of-Toolsを提案する。
凍ったLLMの強力なセマンティック表現機能をフル活用して、CoT推論でツール呼び出しを終了する。
特に、巨大な未知のツールシナリオにおけるアプローチの有効性を検証するために、新しいデータセットSimpleToolQuestionsを構築します。
我々は2つの数値推論ベンチマーク(GSM8K-XLとFuncQA)と2つの知識に基づく質問応答ベンチマーク(KAMELとSimpleToolQuestions)で実験を行った。
実験の結果,本手法はベースラインよりも優れた性能を示した。
また、ツールの選択において重要なモデル出力の次元を特定し、モデルの解釈可能性を高める。
私たちのコードとデータは、https://github.com/fairyshine/Chain-of-Tools.comで利用可能です。
関連論文リスト
- Self-Training Large Language Models for Tool-Use Without Demonstrations [15.17750971071501]
大規模言語モデル (LLMs) は、実際の不正確さや計算ミスに悩まされがちである。
最近の研究は、これらの欠点を緩和するツールを備えたLCMを強化しているが、しばしば金の工具使用デモを必要とする。
本稿では,LLMが実演なしでツールの活用を学べるかどうかを検討する。
論文 参考訳(メタデータ) (2025-02-09T12:06:10Z) - Efficient and Scalable Estimation of Tool Representations in Vector Space [34.767193045989515]
ツール検索のための合成データを生成するためのフレームワークと,小型エンコーダモデルを用いた効率的なデータ駆動型ツール検索戦略を提案する。
ToolBankは、実際のユーザ利用を反映した、新しいツール検索データセットです。
これらの新しい方法により、ToolBenchデータセット上のRecall@Kで最大27.28、ToolBank上のRecall@Kで30.5の改善を実現しています。
論文 参考訳(メタデータ) (2024-09-02T19:39:24Z) - Enhancing Tool Retrieval with Iterative Feedback from Large Language Models [9.588592185027455]
大規模言語モデル(LLM)は、コンテキスト内学習や微調整を通じて、ある程度のツールを効果的に扱うことができる。
現実のシナリオでは、ツールの数は一般的に広範囲で不規則に更新され、専用のツール検索コンポーネントの必要性を強調している。
本稿では,大規模言語モデルからの反復的なフィードバックでツール検索を強化することを提案する。
論文 参考訳(メタデータ) (2024-06-25T11:12:01Z) - Tool Learning in the Wild: Empowering Language Models as Automatic Tool Agents [56.822238860147024]
大規模な言語モデルを外部ツールで拡張することは、彼らのユーティリティを拡張するための有望なアプローチとして現れました。
以前のメソッドは、ツールドキュメントを手動で解析し、コンテキスト内デモを作成し、ツールをLLMがステップバイステップの推論で使用する構造化フォーマットに変換する。
LLMがツール使用ワークフローを自動化できるフレームワークであるAutoToolsを提案する。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Towards Completeness-Oriented Tool Retrieval for Large Language Models [60.733557487886635]
現実世界のシステムは多種多様なツールを組み込んでおり、全てのツールを大規模言語モデルに入力することは不可能である。
既存のツール検索手法は主にユーザクエリとツール記述間のセマンティックマッチングに焦点を当てている。
我々は,ユーザクエリとツール記述のセマンティックな類似性だけでなく,ツールの協調的情報も考慮した,新しいモデル診断型協調学習型ツール検索手法であるCOLTを提案する。
論文 参考訳(メタデータ) (2024-05-25T06:41:23Z) - Seal-Tools: Self-Instruct Tool Learning Dataset for Agent Tuning and Detailed Benchmark [8.573278807410507]
本稿では,新しいツール学習データセットSeal-Toolsを提案する。
Seal-Toolsには、セルフインストラクトAPIのようなツールが含まれている。
また、ツールの実践的応用を示すインスタンスも含まれている。
論文 参考訳(メタデータ) (2024-05-14T06:50:19Z) - What Are Tools Anyway? A Survey from the Language Model Perspective [67.18843218893416]
言語モデル(LM)は強力だが、主にテキスト生成タスクに向いている。
LMが使用する外部プログラムとしてツールを統一的に定義する。
各種ツールの効率を実証的に検討した。
論文 参考訳(メタデータ) (2024-03-18T17:20:07Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - Large Language Models as Tool Makers [85.00361145117293]
我々はLLM A s Tool Makers (LATM) と呼ばれるクローズドループフレームワークを導入する。
ツール作成: 1 つのツール作成: LLM がタスクセットのためのツールを作成するツールメーカとして機能する 2 つのツール使用: 別の LLM がツールユーザとして機能し、ツールメーカが問題解決のために構築したツールを適用する。
論文 参考訳(メタデータ) (2023-05-26T17:50:11Z) - Toolformer: Language Models Can Teach Themselves to Use Tools [62.04867424598204]
言語モデル(LM)は、特に大規模において、いくつかの例やテキスト命令から新しいタスクを解く素晴らしい能力を示す。
LMは、シンプルなAPIを通じて外部ツールの使用を自覚し、両方の世界のベストを達成できることを示します。
Toolformerは、どのAPIを呼び出すか、いつ呼び出すか、どの引数を渡すか、結果を将来のトークン予測に最もうまく組み込む方法を訓練したモデルです。
論文 参考訳(メタデータ) (2023-02-09T16:49:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。