論文の概要: What Are Tools Anyway? A Survey from the Language Model Perspective
- arxiv url: http://arxiv.org/abs/2403.15452v1
- Date: Mon, 18 Mar 2024 17:20:07 GMT
- ステータス: 処理完了
- システム内更新日: 2024-04-01 02:44:33.708090
- Title: What Are Tools Anyway? A Survey from the Language Model Perspective
- Title(参考訳): ツールとは何か?言語モデルから見た調査
- Authors: Zhiruo Wang, Zhoujun Cheng, Hao Zhu, Daniel Fried, Graham Neubig,
- Abstract要約: 言語モデル(LM)は強力だが、主にテキスト生成タスクに向いている。
LMが使用する外部プログラムとしてツールを統一的に定義する。
各種ツールの効率を実証的に検討した。
- 参考スコア(独自算出の注目度): 67.18843218893416
- License: http://creativecommons.org/licenses/by-sa/4.0/
- Abstract: Language models (LMs) are powerful yet mostly for text generation tasks. Tools have substantially enhanced their performance for tasks that require complex skills. However, many works adopt the term "tool" in different ways, raising the question: What is a tool anyway? Subsequently, where and how do tools help LMs? In this survey, we provide a unified definition of tools as external programs used by LMs, and perform a systematic review of LM tooling scenarios and approaches. Grounded on this review, we empirically study the efficiency of various tooling methods by measuring their required compute and performance gains on various benchmarks, and highlight some challenges and potential future research in the field.
- Abstract(参考訳): 言語モデル(LM)は強力だが、主にテキスト生成タスクに向いている。
複雑なスキルを必要とするタスクのパフォーマンスを大幅に向上させた。
しかしながら,多くの著作では,“ツール”という用語をさまざまな方法で採用している。
その後、ツールはどのようにしてLMを助けるのか?
本稿では,LMが使用する外部プログラムとしてツールを統一的に定義し,LMツールのシナリオとアプローチを体系的にレビューする。
本レビューに基づいて,様々なベンチマークで必要な計算および性能向上を計測し,様々なツール手法の有効性を実証的に検討し,今後の課題と課題を明らかにする。
関連論文リスト
- PTR: Precision-Driven Tool Recommendation for Large Language Models [43.53494041932615]
大規模言語モデル(LLM)のためのPTR(Precision-driven Tool Recommendation)アプローチを提案する。
PTRは、過去のツールバンドルの利用を利用して、初期的かつ簡潔なツールセットをキャプチャし、ツールマッチングを実行することで、ツールセットを動的に調整する。
LLMのツールレコメンデーションの有効性を評価するために,新しいデータセットRecToolsとメトリクスTRACCを提案する。
論文 参考訳(メタデータ) (2024-11-14T17:33:36Z) - Enhancing Tool Retrieval with Iterative Feedback from Large Language Models [9.588592185027455]
大規模言語モデル(LLM)は、コンテキスト内学習や微調整を通じて、ある程度のツールを効果的に扱うことができる。
現実のシナリオでは、ツールの数は一般的に広範囲で不規則に更新され、専用のツール検索コンポーネントの必要性を強調している。
本稿では,大規模言語モデルからの反復的なフィードバックでツール検索を強化することを提案する。
論文 参考訳(メタデータ) (2024-06-25T11:12:01Z) - Tool Learning with Large Language Models: A Survey [60.733557487886635]
大規模言語モデル(LLM)を用いたツール学習は,高度に複雑な問題に対処するLLMの能力を強化するための,有望なパラダイムとして登場した。
この分野での注目と急速な進歩にもかかわらず、現存する文献は断片化され、体系的な組織が欠如している。
論文 参考訳(メタデータ) (2024-05-28T08:01:26Z) - Chain of Tools: Large Language Model is an Automatic Multi-tool Learner [54.992464510992605]
Automatic Tool Chain(ATC)は、大規模言語モデル(LLM)がマルチツールユーザとして機能することを可能にするフレームワークである。
次に,ツールの範囲を拡大するために,ブラックボックス探索法を提案する。
包括的な評価のために、ToolFlowという挑戦的なベンチマークを構築しました。
論文 参考訳(メタデータ) (2024-05-26T11:40:58Z) - Planning, Creation, Usage: Benchmarking LLMs for Comprehensive Tool Utilization in Real-World Complex Scenarios [93.68764280953624]
UltraToolは、ツール利用におけるLarge Language Modelsの能力を改善し評価するために設計された、新しいベンチマークである。
現実の複雑さを強調し、効果的な問題解決のために正確で多段階の計画を必要とする。
UltraToolの重要な特徴は、ツールの使用前に発生する自然言語による計画の独立した評価である。
論文 参考訳(メタデータ) (2024-01-30T16:52:56Z) - EASYTOOL: Enhancing LLM-based Agents with Concise Tool Instruction [56.02100384015907]
EasyToolは、多種多様で長いツールドキュメントを統一的で簡潔なツール命令に変換するフレームワークである。
トークン使用量を大幅に削減し、現実のシナリオにおけるツール利用のパフォーマンスを向上させることができる。
論文 参考訳(メタデータ) (2024-01-11T15:45:11Z) - MetaTool Benchmark for Large Language Models: Deciding Whether to Use
Tools and Which to Use [82.24774504584066]
大規模言語モデル(LLM)は、その印象的な自然言語処理(NLP)能力のために大きな注目を集めている。
このベンチマークは、LLMがツールの使用意識を持ち、ツールを正しく選択できるかどうかを評価するためのものだ。
8つの人気のあるLCMを巻き込んだ実験を行い、その大半は依然として効果的にツールを選択するのに苦労していることがわかった。
論文 参考訳(メタデータ) (2023-10-04T19:39:26Z) - ToolkenGPT: Augmenting Frozen Language Models with Massive Tools via
Tool Embeddings [25.5476046472217]
大規模な言語モデルを外部ツールで拡張することは、複雑な問題を解決するための有望なアプローチとして現れている。
最近のインコンテキスト学習パラダイムはこれらの問題を緩和するが、制限されたコンテキスト長はいくつかのデモのみを可能にする。
我々は、両者の利点を組み合わせた代替アプローチである$textbfToolkenGPT$を提案する。
論文 参考訳(メタデータ) (2023-05-19T09:54:21Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。