Hierarchical Generative Adversarial Imitation Learning with Mid-level Input Generation for Autonomous Driving on Urban Environments
- URL: http://arxiv.org/abs/2302.04823v5
- Date: Thu, 5 Sep 2024 15:22:55 GMT
- Title: Hierarchical Generative Adversarial Imitation Learning with Mid-level Input Generation for Autonomous Driving on Urban Environments
- Authors: Gustavo Claudio Karl Couto, Eric Aislan Antonelo,
- Abstract summary: Generative Adversarial Learning (RL) approaches are based exclusively on engineered rewards.
Deep networks directly from raw images on RL tasks is known to be unstable and troublesome.
This work proposes a hierarchical GAIL-based architecture (hGAIL) which decouples representation learning from the driving task to solve the autonomous navigation of a vehicle.
- Score: 1.6267479602370543
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deriving robust control policies for realistic urban navigation scenarios is not a trivial task. In an end-to-end approach, these policies must map high-dimensional images from the vehicle's cameras to low-level actions such as steering and throttle. While pure Reinforcement Learning (RL) approaches are based exclusively on engineered rewards, Generative Adversarial Imitation Learning (GAIL) agents learn from expert demonstrations while interacting with the environment, which favors GAIL on tasks for which a reward signal is difficult to derive, such as autonomous driving. However, training deep networks directly from raw images on RL tasks is known to be unstable and troublesome. To deal with that, this work proposes a hierarchical GAIL-based architecture (hGAIL) which decouples representation learning from the driving task to solve the autonomous navigation of a vehicle. The proposed architecture consists of two modules: a GAN (Generative Adversarial Net) which generates an abstract mid-level input representation, which is the Bird's-Eye View (BEV) from the surroundings of the vehicle; and the GAIL which learns to control the vehicle based on the BEV predictions from the GAN as input. hGAIL is able to learn both the policy and the mid-level representation simultaneously as the agent interacts with the environment. Our experiments made in the CARLA simulation environment have shown that GAIL exclusively from cameras (without BEV) fails to even learn the task, while hGAIL, after training exclusively on one city, was able to autonomously navigate successfully in 98% of the intersections of a new city not used in training phase. Videos and code available at: https://sites.google.com/view/hgail
Related papers
- FastRLAP: A System for Learning High-Speed Driving via Deep RL and
Autonomous Practicing [71.76084256567599]
We present a system that enables an autonomous small-scale RC car to drive aggressively from visual observations using reinforcement learning (RL)
Our system, FastRLAP (faster lap), trains autonomously in the real world, without human interventions, and without requiring any simulation or expert demonstrations.
The resulting policies exhibit emergent aggressive driving skills, such as timing braking and acceleration around turns and avoiding areas which impede the robot's motion, approaching the performance of a human driver using a similar first-person interface over the course of training.
arXiv Detail & Related papers (2023-04-19T17:33:47Z) - Policy Pre-training for End-to-end Autonomous Driving via
Self-supervised Geometric Modeling [96.31941517446859]
We propose PPGeo (Policy Pre-training via Geometric modeling), an intuitive and straightforward fully self-supervised framework curated for the policy pretraining in visuomotor driving.
We aim at learning policy representations as a powerful abstraction by modeling 3D geometric scenes on large-scale unlabeled and uncalibrated YouTube driving videos.
In the first stage, the geometric modeling framework generates pose and depth predictions simultaneously, with two consecutive frames as input.
In the second stage, the visual encoder learns driving policy representation by predicting the future ego-motion and optimizing with the photometric error based on current visual observation only.
arXiv Detail & Related papers (2023-01-03T08:52:49Z) - Tackling Real-World Autonomous Driving using Deep Reinforcement Learning [63.3756530844707]
In this work, we propose a model-free Deep Reinforcement Learning Planner training a neural network that predicts acceleration and steering angle.
In order to deploy the system on board the real self-driving car, we also develop a module represented by a tiny neural network.
arXiv Detail & Related papers (2022-07-05T16:33:20Z) - Learning energy-efficient driving behaviors by imitating experts [75.12960180185105]
This paper examines the role of imitation learning in bridging the gap between control strategies and realistic limitations in communication and sensing.
We show that imitation learning can succeed in deriving policies that, if adopted by 5% of vehicles, may boost the energy-efficiency of networks with varying traffic conditions by 15% using only local observations.
arXiv Detail & Related papers (2022-06-28T17:08:31Z) - Generative Adversarial Imitation Learning for End-to-End Autonomous
Driving on Urban Environments [0.8122270502556374]
Generative Adversarial Imitation Learning (GAIL) can train policies without explicitly requiring to define a reward function.
We show that both of them are capable of imitating the expert trajectory from start to end after training ends.
arXiv Detail & Related papers (2021-10-16T15:04:13Z) - Structured Bird's-Eye-View Traffic Scene Understanding from Onboard
Images [128.881857704338]
We study the problem of extracting a directed graph representing the local road network in BEV coordinates, from a single onboard camera image.
We show that the method can be extended to detect dynamic objects on the BEV plane.
We validate our approach against powerful baselines and show that our network achieves superior performance.
arXiv Detail & Related papers (2021-10-05T12:40:33Z) - End-to-End Intersection Handling using Multi-Agent Deep Reinforcement
Learning [63.56464608571663]
Navigating through intersections is one of the main challenging tasks for an autonomous vehicle.
In this work, we focus on the implementation of a system able to navigate through intersections where only traffic signs are provided.
We propose a multi-agent system using a continuous, model-free Deep Reinforcement Learning algorithm used to train a neural network for predicting both the acceleration and the steering angle at each time step.
arXiv Detail & Related papers (2021-04-28T07:54:40Z) - Learning a State Representation and Navigation in Cluttered and Dynamic
Environments [6.909283975004628]
We present a learning-based pipeline to realise local navigation with a quadrupedal robot in cluttered environments.
The robot is able to safely locomote to a target location based on frames from a depth camera without any explicit mapping of the environment.
We show that our system can handle noisy depth images, avoid dynamic obstacles unseen during training, and is endowed with local spatial awareness.
arXiv Detail & Related papers (2021-03-07T13:19:06Z) - Autonomous Navigation through intersections with Graph
ConvolutionalNetworks and Conditional Imitation Learning for Self-driving
Cars [10.080958939027363]
In autonomous driving, navigation through unsignaled intersections is a challenging task.
We propose a novel branched network G-CIL for the navigation policy learning.
Our end-to-end trainable neural network outperforms the baselines with higher success rate and shorter navigation time.
arXiv Detail & Related papers (2021-02-01T07:33:12Z) - An A* Curriculum Approach to Reinforcement Learning for RGBD Indoor
Robot Navigation [6.660458629649825]
Recently released photo-realistic simulators such as Habitat allow for the training of networks that output control actions directly from perception.
Our paper tries to overcome this problem by separating the training of the perception and control neural nets and increasing the path complexity gradually.
arXiv Detail & Related papers (2021-01-05T20:35:14Z) - Interpretable End-to-end Urban Autonomous Driving with Latent Deep
Reinforcement Learning [32.97789225998642]
We propose an interpretable deep reinforcement learning method for end-to-end autonomous driving.
A sequential latent environment model is introduced and learned jointly with the reinforcement learning process.
Our method is able to provide a better explanation of how the car reasons about the driving environment.
arXiv Detail & Related papers (2020-01-23T18:36:35Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.