論文の概要: Information Theoretic Lower Bounds for Information Theoretic Upper
Bounds
- arxiv url: http://arxiv.org/abs/2302.04925v2
- Date: Sun, 14 Jan 2024 08:18:25 GMT
- ステータス: 処理完了
- システム内更新日: 2024-01-18 03:23:28.408114
- Title: Information Theoretic Lower Bounds for Information Theoretic Upper
Bounds
- Title(参考訳): 情報理論上界に対する情報理論下界
- Authors: Roi Livni
- Abstract要約: コンベックス最適化の文脈における出力モデルと経験的一般化の関係について検討する。
本研究は,真のリスク最小化には相互情報が必要であることを明らかにする。
既存の情報理論の一般化境界は、SGDや正規化などのアルゴリズムの能力を捉えるのに不足している。
- 参考スコア(独自算出の注目度): 14.268363583731848
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We examine the relationship between the mutual information between the output
model and the empirical sample and the generalization of the algorithm in the
context of stochastic convex optimization. Despite increasing interest in
information-theoretic generalization bounds, it is uncertain if these bounds
can provide insight into the exceptional performance of various learning
algorithms. Our study of stochastic convex optimization reveals that, for true
risk minimization, dimension-dependent mutual information is necessary. This
indicates that existing information-theoretic generalization bounds fall short
in capturing the generalization capabilities of algorithms like SGD and
regularized ERM, which have dimension-independent sample complexity.
- Abstract(参考訳): 確率的凸最適化の文脈において,出力モデルと経験的サンプル間の相互情報とアルゴリズムの一般化の関係について検討する。
情報理論の一般化バウンダリへの関心が高まっているにもかかわらず、これらのバウンダリが様々な学習アルゴリズムの異常な性能に関する洞察を与えることができるかどうかは不明である。
確率凸最適化の研究により,真のリスク最小化には次元依存的相互情報が必要であることが明らかになった。
このことは、既存の情報理論の一般化境界は、次元に依存しないサンプル複雑性を持つSGDや正規化ERMのようなアルゴリズムの一般化能力の獲得に不足していることを示している。
関連論文リスト
- Slicing Mutual Information Generalization Bounds for Neural Networks [14.48773730230054]
我々は、ディープラーニングアルゴリズムに適した、より厳密な情報理論の一般化バウンダリを導入する。
我々の境界は、標準MI境界よりも有意な計算的および統計的優位性を提供する。
パラメータがランダムな部分空間に正確に横たわる必要がないアルゴリズムに解析を拡張します。
論文 参考訳(メタデータ) (2024-06-06T13:15:37Z) - Quantized Hierarchical Federated Learning: A Robust Approach to
Statistical Heterogeneity [3.8798345704175534]
本稿では,コミュニケーション効率に量子化を組み込んだ新しい階層型フェデレーション学習アルゴリズムを提案する。
最適性ギャップと収束率を評価するための包括的な分析フレームワークを提供する。
この結果から,本アルゴリズムはパラメータの範囲で常に高い学習精度を達成できることが判明した。
論文 参考訳(メタデータ) (2024-03-03T15:40:24Z) - A unified framework for information-theoretic generalization bounds [8.04975023021212]
本稿では,学習アルゴリズムにおける情報理論の一般化境界を導出するための一般的な手法を提案する。
主な技術的ツールは、測度の変化と、$L_psi_p$ Orlicz空間におけるヤングの不等式の緩和に基づく確率的デコリレーション補題である。
論文 参考訳(メタデータ) (2023-05-18T15:36:20Z) - STEERING: Stein Information Directed Exploration for Model-Based
Reinforcement Learning [111.75423966239092]
遷移モデルの現在の推定値と未知の最適値との間の積分確率距離(IPM)の観点から探索インセンティブを提案する。
KSDに基づく新しいアルゴリズムを開発した。 textbfSTEin information dirtextbfEcted Explor for model-based textbfReinforcement Learntextbfing。
論文 参考訳(メタデータ) (2023-01-28T00:49:28Z) - Learning to Bound Counterfactual Inference in Structural Causal Models
from Observational and Randomised Data [64.96984404868411]
我々は、従来のEMベースのアルゴリズムを拡張するための全体的なデータの特徴付けを導出する。
新しいアルゴリズムは、そのような混合データソースからモデルパラメータの(不特定性)領域を近似することを学ぶ。
反実的な結果に間隔近似を与え、それが特定可能な場合の点に崩壊する。
論文 参考訳(メタデータ) (2022-12-06T12:42:11Z) - GEC: A Unified Framework for Interactive Decision Making in MDP, POMDP,
and Beyond [101.5329678997916]
対話型意思決定の一般的な枠組みの下で, サンプル高能率強化学習(RL)について検討した。
本稿では,探索とエクスプロイトの基本的なトレードオフを特徴付ける,新しい複雑性尺度である一般化エルダー係数(GEC)を提案する。
低 GEC の RL 問題は非常にリッチなクラスであり、これは低ベルマン楕円体次元問題、双線型クラス、低証人ランク問題、PO-双線型クラス、一般化正規PSR を仮定する。
論文 参考訳(メタデータ) (2022-11-03T16:42:40Z) - On Leave-One-Out Conditional Mutual Information For Generalization [122.2734338600665]
残余条件付き相互情報(loo-CMI)の新しい尺度に基づく教師付き学習アルゴリズムのための情報理論の一般化境界を導出する。
他のCMI境界とは対照的に、我々のloo-CMI境界は容易に計算でき、古典的なout-out-out-cross-validationのような他の概念と関連して解釈できる。
ディープラーニングのシナリオにおいて予測された一般化ギャップを評価することにより,境界の質を実証的に検証する。
論文 参考訳(メタデータ) (2022-07-01T17:58:29Z) - Optimizing Information-theoretical Generalization Bounds via Anisotropic
Noise in SGLD [73.55632827932101]
SGLDにおけるノイズ構造を操作することにより,情報理論の一般化を最適化する。
低経験的リスクを保証するために制約を課すことで、最適なノイズ共分散が期待される勾配共分散の平方根であることを証明する。
論文 参考訳(メタデータ) (2021-10-26T15:02:27Z) - Fractal Structure and Generalization Properties of Stochastic
Optimization Algorithms [71.62575565990502]
最適化アルゴリズムの一般化誤差は、その一般化尺度の根底にあるフラクタル構造の複雑性'にバウンドできることを示す。
さらに、特定の問題(リニア/ロジスティックレグレッション、隠れ/層ニューラルネットワークなど)とアルゴリズムに対して、結果をさらに専門化します。
論文 参考訳(メタデータ) (2021-06-09T08:05:36Z) - Information Complexity and Generalization Bounds [0.0]
ランダム化学習アルゴリズムにおけるPAC-Bayesianと相互情報に基づく上限の統一画像を示す。
本稿では,ニューラルネットワーク,すなわちEntropy-とPAC-Bayes-SGDの2つの実践例について論じる。
論文 参考訳(メタデータ) (2021-05-04T20:37:57Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。