CCDN: Checkerboard Corner Detection Network for Robust Camera
Calibration
- URL: http://arxiv.org/abs/2302.05097v1
- Date: Fri, 10 Feb 2023 07:47:44 GMT
- Title: CCDN: Checkerboard Corner Detection Network for Robust Camera
Calibration
- Authors: Ben Chen, Caihua Xiong, Qi Zhang
- Abstract summary: checkerboard corner detection network and some post-processing techniques.
Network model is a fully convolutional network with improvements of loss function and learning rate.
In order to remove the false positives, we employ three post-processing techniques including threshold related to maximum response, non-maximum suppression, and clustering.
- Score: 10.614480156920935
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Aiming to improve the checkerboard corner detection robustness against the
images with poor quality, such as lens distortion, extreme poses, and noise, we
propose a novel detection algorithm which can maintain high accuracy on inputs
under multiply scenarios without any prior knowledge of the checkerboard
pattern. This whole algorithm includes a checkerboard corner detection network
and some post-processing techniques. The network model is a fully convolutional
network with improvements of loss function and learning rate, which can deal
with the images of arbitrary size and produce correspondingly-sized output with
a corner score on each pixel by efficient inference and learning. Besides, in
order to remove the false positives, we employ three post-processing techniques
including threshold related to maximum response, non-maximum suppression, and
clustering. Evaluations on two different datasets show its superior robustness,
accuracy and wide applicability in quantitative comparisons with the
state-of-the-art methods, like MATE, ChESS, ROCHADE and OCamCalib.
Related papers
- Accurate Checkerboard Corner Detection under Defoucs [0.0]
This paper focuses on enhancing feature extraction for chessboard corner detection.
We propose a novel sub-pixel refinement approach based on symmetry, which signifi cantly improves accuracy for visible light cameras.
Our method demonstrates superior performance, achiev ing substantial accuracy improvements over existing tech niques.
arXiv Detail & Related papers (2024-10-17T09:23:30Z) - Learning to Make Keypoints Sub-Pixel Accurate [80.55676599677824]
This work addresses the challenge of sub-pixel accuracy in detecting 2D local features.
We propose a novel network that enhances any detector with sub-pixel precision by learning an offset vector for detected features.
arXiv Detail & Related papers (2024-07-16T12:39:56Z) - KECOR: Kernel Coding Rate Maximization for Active 3D Object Detection [48.66703222700795]
We resort to a novel kernel strategy to identify the most informative point clouds to acquire labels.
To accommodate both one-stage (i.e., SECOND) and two-stage detectors, we incorporate the classification entropy tangent and well trade-off between detection performance and the total number of bounding boxes selected for annotation.
Our results show that approximately 44% box-level annotation costs and 26% computational time are reduced compared to the state-of-the-art method.
arXiv Detail & Related papers (2023-07-16T04:27:03Z) - Quantity-Aware Coarse-to-Fine Correspondence for Image-to-Point Cloud
Registration [4.954184310509112]
Image-to-point cloud registration aims to determine the relative camera pose between an RGB image and a reference point cloud.
Matching individual points with pixels can be inherently ambiguous due to modality gaps.
We propose a framework to capture quantity-aware correspondences between local point sets and pixel patches.
arXiv Detail & Related papers (2023-07-14T03:55:54Z) - RCDN -- Robust X-Corner Detection Algorithm based on Advanced CNN Model [3.580983453285039]
We present a novel detection algorithm which can maintain high sub-pixel precision on inputs under multiple interferences.
The whole algorithm, adopting a coarse-to-fine strategy, contains a X-corner detection network and three post-processing techniques.
Evaluations on real and synthetic images indicate that the presented algorithm has the higher detection rate, sub-pixel accuracy and robustness than other commonly used methods.
arXiv Detail & Related papers (2023-07-07T10:40:41Z) - One-Stage Deep Edge Detection Based on Dense-Scale Feature Fusion and
Pixel-Level Imbalance Learning [5.370848116287344]
We propose a one-stage neural network model that can generate high-quality edge images without postprocessing.
The proposed model adopts a classic encoder-decoder framework in which a pre-trained neural model is used as the encoder.
We propose a new loss function that addresses the pixel-level imbalance in the edge image.
arXiv Detail & Related papers (2022-03-17T15:26:00Z) - Lightweight Convolutional Neural Network with Gaussian-based Grasping
Representation for Robotic Grasping Detection [4.683939045230724]
Current object detectors are difficult to strike a balance between high accuracy and fast inference speed.
We present an efficient and robust fully convolutional neural network model to perform robotic grasping pose estimation.
The network is an order of magnitude smaller than other excellent algorithms.
arXiv Detail & Related papers (2021-01-25T16:36:53Z) - D-Unet: A Dual-encoder U-Net for Image Splicing Forgery Detection and
Localization [108.8592577019391]
Image splicing forgery detection is a global binary classification task that distinguishes the tampered and non-tampered regions by image fingerprints.
We propose a novel network called dual-encoder U-Net (D-Unet) for image splicing forgery detection, which employs an unfixed encoder and a fixed encoder.
In an experimental comparison study of D-Unet and state-of-the-art methods, D-Unet outperformed the other methods in image-level and pixel-level detection.
arXiv Detail & Related papers (2020-12-03T10:54:02Z) - Dense Label Encoding for Boundary Discontinuity Free Rotation Detection [69.75559390700887]
This paper explores a relatively less-studied methodology based on classification.
We propose new techniques to push its frontier in two aspects.
Experiments and visual analysis on large-scale public datasets for aerial images show the effectiveness of our approach.
arXiv Detail & Related papers (2020-11-19T05:42:02Z) - SADet: Learning An Efficient and Accurate Pedestrian Detector [68.66857832440897]
This paper proposes a series of systematic optimization strategies for the detection pipeline of one-stage detector.
It forms a single shot anchor-based detector (SADet) for efficient and accurate pedestrian detection.
Though structurally simple, it presents state-of-the-art result and real-time speed of $20$ FPS for VGA-resolution images.
arXiv Detail & Related papers (2020-07-26T12:32:38Z) - ZoomNet: Part-Aware Adaptive Zooming Neural Network for 3D Object
Detection [69.68263074432224]
We present a novel framework named ZoomNet for stereo imagery-based 3D detection.
The pipeline of ZoomNet begins with an ordinary 2D object detection model which is used to obtain pairs of left-right bounding boxes.
To further exploit the abundant texture cues in RGB images for more accurate disparity estimation, we introduce a conceptually straight-forward module -- adaptive zooming.
arXiv Detail & Related papers (2020-03-01T17:18:08Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.