Differentiable Outlier Detection Enable Robust Deep Multimodal Analysis
- URL: http://arxiv.org/abs/2302.05608v1
- Date: Sat, 11 Feb 2023 05:46:21 GMT
- Title: Differentiable Outlier Detection Enable Robust Deep Multimodal Analysis
- Authors: Zhu Wang, Sourav Medya, Sathya N. Ravi
- Abstract summary: We propose an end-to-end vision and language model incorporating explicit knowledge graphs.
We also introduce an interactive out-of-distribution layer using implicit network operator.
In practice, we apply our model on several vision and language downstream tasks including visual question answering, visual reasoning, and image-text retrieval.
- Score: 20.316056261749946
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Often, deep network models are purely inductive during training and while
performing inference on unseen data. Thus, when such models are used for
predictions, it is well known that they often fail to capture the semantic
information and implicit dependencies that exist among objects (or concepts) on
a population level. Moreover, it is still unclear how domain or prior modal
knowledge can be specified in a backpropagation friendly manner, especially in
large-scale and noisy settings. In this work, we propose an end-to-end vision
and language model incorporating explicit knowledge graphs. We also introduce
an interactive out-of-distribution (OOD) layer using implicit network operator.
The layer is used to filter noise that is brought by external knowledge base.
In practice, we apply our model on several vision and language downstream tasks
including visual question answering, visual reasoning, and image-text retrieval
on different datasets. Our experiments show that it is possible to design
models that perform similarly to state-of-art results but with significantly
fewer samples and training time.
Related papers
- Corpus Considerations for Annotator Modeling and Scaling [9.263562546969695]
We show that the commonly used user token model consistently outperforms more complex models.
Our findings shed light on the relationship between corpus statistics and annotator modeling performance.
arXiv Detail & Related papers (2024-04-02T22:27:24Z) - Recognizing Unseen Objects via Multimodal Intensive Knowledge Graph
Propagation [68.13453771001522]
We propose a multimodal intensive ZSL framework that matches regions of images with corresponding semantic embeddings.
We conduct extensive experiments and evaluate our model on large-scale real-world data.
arXiv Detail & Related papers (2023-06-14T13:07:48Z) - Context-driven Visual Object Recognition based on Knowledge Graphs [0.8701566919381223]
We propose an approach that enhances deep learning methods by using external contextual knowledge encoded in a knowledge graph.
We conduct a series of experiments to investigate the impact of different contextual views on the learned object representations for the same image dataset.
arXiv Detail & Related papers (2022-10-20T13:09:00Z) - Pretraining on Interactions for Learning Grounded Affordance
Representations [22.290431852705662]
We train a neural network to predict objects' trajectories in a simulated interaction.
We show that our network's latent representations differentiate between both observed and unobserved affordances.
Our results suggest a way in which modern deep learning approaches to grounded language learning can be integrated with traditional formal semantic notions of lexical representations.
arXiv Detail & Related papers (2022-07-05T19:19:53Z) - CHALLENGER: Training with Attribution Maps [63.736435657236505]
We show that utilizing attribution maps for training neural networks can improve regularization of models and thus increase performance.
In particular, we show that our generic domain-independent approach yields state-of-the-art results in vision, natural language processing and on time series tasks.
arXiv Detail & Related papers (2022-05-30T13:34:46Z) - An Empirical Investigation of Commonsense Self-Supervision with
Knowledge Graphs [67.23285413610243]
Self-supervision based on the information extracted from large knowledge graphs has been shown to improve the generalization of language models.
We study the effect of knowledge sampling strategies and sizes that can be used to generate synthetic data for adapting language models.
arXiv Detail & Related papers (2022-05-21T19:49:04Z) - Perceptual Score: What Data Modalities Does Your Model Perceive? [73.75255606437808]
We introduce the perceptual score, a metric that assesses the degree to which a model relies on the different subsets of the input features.
We find that recent, more accurate multi-modal models for visual question-answering tend to perceive the visual data less than their predecessors.
Using the perceptual score also helps to analyze model biases by decomposing the score into data subset contributions.
arXiv Detail & Related papers (2021-10-27T12:19:56Z) - Revisiting Contrastive Methods for Unsupervised Learning of Visual
Representations [78.12377360145078]
Contrastive self-supervised learning has outperformed supervised pretraining on many downstream tasks like segmentation and object detection.
In this paper, we first study how biases in the dataset affect existing methods.
We show that current contrastive approaches work surprisingly well across: (i) object- versus scene-centric, (ii) uniform versus long-tailed and (iii) general versus domain-specific datasets.
arXiv Detail & Related papers (2021-06-10T17:59:13Z) - Plausible Counterfactuals: Auditing Deep Learning Classifiers with
Realistic Adversarial Examples [84.8370546614042]
Black-box nature of Deep Learning models has posed unanswered questions about what they learn from data.
Generative Adversarial Network (GAN) and multi-objectives are used to furnish a plausible attack to the audited model.
Its utility is showcased within a human face classification task, unveiling the enormous potential of the proposed framework.
arXiv Detail & Related papers (2020-03-25T11:08:56Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.