Multi-channel all-optical switching based on coherent perfect absorption
in atom-cavity system
- URL: http://arxiv.org/abs/2302.05609v3
- Date: Sun, 10 Mar 2024 17:29:15 GMT
- Title: Multi-channel all-optical switching based on coherent perfect absorption
in atom-cavity system
- Authors: Liyong Wang, Yinxue Zhao and Jiajia Du
- Abstract summary: We propose an ultrahigh-efficiency, broadband and multi-channel all-optical switching scheme based on broadband coherent perfect absorption.
The proposed scheme is useful for constructing all-optical routing, all-optical communication networks and various quantum logic elements.
- Score: 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: We propose an ultrahigh-efficiency, broadband and multi-channel all-optical
switching scheme based on broadband coherent perfect absorption (CPA) in a
linear and nonlinear regimes in a cavity quantum electrodynamics (CQED) system.
Two separate atomic transitions are excited simultaneously by two signal fields
coupled from two ends of an optical cavity under the collective strong coupling
condition. Three polariton eigenstates are produced which can be tuned freely
by varying system parameters. The output field intensities of multiple channels
are zero when the CPA criterion is satisfied. However, destructive quantum
interference can be induced by a free-space weak control laser tuned to the
multi-polariton excitation. As a consequence, the CQED system acts as a
coherent perfect light absorber/transmitter as the control field is turned
on/off the polariton resonances. In particular, the proposed scheme may be used
to realize broadband multi-throw all-optical switching in the nonlinear
excitation regime. The proposed scheme is useful for constructing all-optical
routing, all-optical communication networks and various quantum logic elements.
Related papers
- Passive photonic CZ gate with two-level emitters in chiral multi-mode waveguide QED [41.94295877935867]
We design a passive conditional gate between co-propagating photons using an array of only two-level emitters.
The key resource is to harness the effective photon-photon interaction induced by the chiral coupling of the emitter array to two waveguide modes.
We show how to harness this non-linear phase shift to engineer a conditional, deterministic photonic gate in different qubit encodings.
arXiv Detail & Related papers (2024-07-08T18:00:25Z) - Stark Control of Plexcitonic States in Incoherent Quantum Systems [3.10770247120758]
We show coherent control of plexcitonic states in (i) an off-resonant and (ii) a resonant coupled quantum systems through optical Stark effect (OSE)
We analyze a hybrid plasmon-emitter system which exhibits tunable Fano resonance, Stark induced transparency (SIT) and vacuum Rabi splitting due to Stark degenerate shift in the states of quantum emitter (QE)
arXiv Detail & Related papers (2024-06-27T13:49:42Z) - Ab-Initio Calculations of Nonlinear Susceptibility and Multi-Phonon Mixing Processes in a 2DEG-Piezoelectric Heterostructure [41.94295877935867]
Solid-state elastic-wave phonons are a promising platform for a wide range of quantum information applications.
We propose a general architecture using piezoelectric-semiconductor heterostructures.
We show that, for this system, the strong third-order nonlinearity could enable single-phonon Kerr shift in an acoustic cavity.
arXiv Detail & Related papers (2024-02-01T03:34:41Z) - Sculpting ultrastrong light-matter coupling through spatial matter
structuring [0.0]
We experimentally implement a novel strategy to sculpt ultrastrong multi-mode coupling.
We control the number of light-matter coupled modes, their octave-spanning frequency spectra, and their response to magnetic tuning.
This offers novel pathways for controlling dissipation, tailoring quantum light sources, nonlinearities, correlations, as well as entanglement in quantum information processing.
arXiv Detail & Related papers (2023-11-30T06:31:56Z) - Chiral phase modulation and tunable broadband perfect absorber using the
coherent cold atomic ensemble [21.31425940866288]
We investigate the two-channel nonreciprocal scattering of a coherent atomic ensemble under the linear spatial Kramers-Kronig modulation.
Our proposal may be used to design and integrate some all-optical functional devices at extremely low power levels for quantum information processing and optical communication networks.
arXiv Detail & Related papers (2023-10-01T06:27:45Z) - Hyper-entanglement between pulse modes and frequency bins [101.18253437732933]
Hyper-entanglement between two or more photonic degrees of freedom (DOF) can enhance and enable new quantum protocols.
We demonstrate the generation of photon pairs hyper-entangled between pulse modes and frequency bins.
arXiv Detail & Related papers (2023-04-24T15:43:08Z) - Tunable optical multistability induced by a single cavity mode in cavity
quantum electrodynamics system [0.6906005491572401]
The threshold and optical multistability curve can be tuned freely by system parameters in a broadband range.
The proposed scheme is useful for manufacturing integrated application of multi-state all-optical logic devices and constructing basic elements of all-optical communication networks.
arXiv Detail & Related papers (2023-02-16T06:40:54Z) - Towards Fully Passive Time-Bin Quantum Key Distribution over Multi-Mode
Channels [37.69303106863453]
Phase stabilization of distant quantum time-bin interferometers is a major challenge for quantum communication networks.
We demonstrate a novel approach using reference frame independent time-bin quantum key distribution.
This is achieved without any mode filtering, mode sorting, adaptive optics, active basis selection, or active phase alignment.
arXiv Detail & Related papers (2023-02-10T03:53:21Z) - Tunable nonlinear coherent perfect absorption and reflection in cavity
QED [0.0]
We propose and analyze a scheme for realizing tunable coherent perfect absorption (CPA) and reflection (CPR) in a three-level $Lambda$-type atom-cavity system.
With EIT-type interference induced by a coherent coupling laser, the scheme provides a new method of attaining tunable near CPR at two-photon resonance.
arXiv Detail & Related papers (2022-06-06T08:26:21Z) - Waveguide quantum optomechanics: parity-time phase transitions in
ultrastrong coupling regime [125.99533416395765]
We show that the simplest set-up of two qubits, harmonically trapped over an optical waveguide, enables the ultrastrong coupling regime of the quantum optomechanical interaction.
The combination of the inherent open nature of the system and the strong optomechanical coupling leads to emerging parity-time (PT) symmetry.
The $mathcalPT$ phase transition drives long-living subradiant states, observable in the state-of-the-art waveguide QED setups.
arXiv Detail & Related papers (2020-07-04T11:02:20Z) - Universal non-adiabatic control of small-gap superconducting qubits [47.187609203210705]
We introduce a superconducting composite qubit formed from two capacitively coupled transmon qubits.
We control this low-frequency CQB using solely baseband pulses, non-adiabatic transitions, and coherent Landau-Zener interference.
This work demonstrates that universal non-adiabatic control of low-frequency qubits is feasible using solely baseband pulses.
arXiv Detail & Related papers (2020-03-29T22:48:34Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.