Tunable optical multistability induced by a single cavity mode in cavity
quantum electrodynamics system
- URL: http://arxiv.org/abs/2302.08115v3
- Date: Sun, 10 Mar 2024 17:59:51 GMT
- Title: Tunable optical multistability induced by a single cavity mode in cavity
quantum electrodynamics system
- Authors: Liyong Wang, Yinxue Zhao and Jiajia Du
- Abstract summary: The threshold and optical multistability curve can be tuned freely by system parameters in a broadband range.
The proposed scheme is useful for manufacturing integrated application of multi-state all-optical logic devices and constructing basic elements of all-optical communication networks.
- Score: 0.6906005491572401
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: A tunable optical multistability scheme based on a single cavity mode coupled
with two separate atomic transitions in an atom-cavity system is proposed and
demonstrated. Under the collective strong coupling condition, multiple
polariton eigenstates of the atom-cavity system are produced. The threshold and
optical multistability curve can be tuned freely by system parameters in a
broadband range. Moreover, a certain bistability region of the system is split
to two bistability regions due to destructive quantum interference induced by
an extra weak control field. Compared to traditional optical multistabilities
created by two or more light fields, the proposed optical multistability scheme
has compactness and is easy to be miniaturized. The proposed scheme is useful
for manufacturing integrated application of multi-state all-optical logic
devices and constructing basic elements of all-optical communication networks.
Related papers
- All-optical modulation with single-photons using electron avalanche [69.65384453064829]
We demonstrate all-optical modulation using a beam with single-photon intensity.
Our approach opens up the possibility of terahertz-speed optical switching at the single-photon level.
arXiv Detail & Related papers (2023-12-18T20:14:15Z) - Sculpting ultrastrong light-matter coupling through spatial matter
structuring [0.0]
We experimentally implement a novel strategy to sculpt ultrastrong multi-mode coupling.
We control the number of light-matter coupled modes, their octave-spanning frequency spectra, and their response to magnetic tuning.
This offers novel pathways for controlling dissipation, tailoring quantum light sources, nonlinearities, correlations, as well as entanglement in quantum information processing.
arXiv Detail & Related papers (2023-11-30T06:31:56Z) - Shaping Single Photons through Multimode Optical Fibers using Mechanical
Perturbations [55.41644538483948]
We show an all-fiber approach for controlling the shape of single photons and the spatial correlations between entangled photon pairs.
We optimize these perturbations to localize the spatial distribution of a single photon or the spatial correlations of photon pairs in a single spot.
arXiv Detail & Related papers (2023-06-04T07:33:39Z) - Multi-channel all-optical switching based on coherent perfect absorption
in atom-cavity system [0.6906005491572401]
We propose an ultrahigh-efficiency, broadband and multi-channel all-optical switching scheme based on broadband coherent perfect absorption.
The proposed scheme is useful for constructing all-optical routing, all-optical communication networks and various quantum logic elements.
arXiv Detail & Related papers (2023-02-11T05:48:37Z) - Electromagnetically induced transparency in inhomogeneously broadened
divacancy defect ensembles in SiC [52.74159341260462]
Electromagnetically induced transparency (EIT) is a phenomenon that can provide strong and robust interfacing between optical signals and quantum coherence of electronic spins.
We show that EIT can be established with high visibility also in this material platform upon careful design of the measurement geometry.
Our work provides an understanding of EIT in multi-level systems with significant inhomogeneities, and our considerations are valid for a wide array of defects in semiconductors.
arXiv Detail & Related papers (2022-03-18T11:22:09Z) - Topologically Protecting Squeezed Light on a Photonic Chip [58.71663911863411]
Integrated photonics offers an elegant way to increase the nonlinearity by confining light strictly inside the waveguide.
We experimentally demonstrate the topologically protected nonlinear process of spontaneous four-wave mixing enabling the generation of squeezed light on a silica chip.
arXiv Detail & Related papers (2021-06-14T13:39:46Z) - Purcell enhanced and indistinguishable single-photon generation from
quantum dots coupled to on-chip integrated ring resonators [0.2642406403099596]
Integrated photonic circuits provide a versatile toolbox of functionalities for advanced quantum optics applications.
We develop GaAs monolithic ring cavities based on distributed Bragg reflector ridge waveguides.
We demonstrate an on-demand single-photon generation with strongly suppressed multi-photon emission probability as low as 1% and two-photon interference with visibility up to 95%.
arXiv Detail & Related papers (2020-07-25T12:43:53Z) - Cavity Optomechanics with Photonic Bound States in the Continuum [0.0]
We propose a versatile, free-space cavity optomechanics platform built from two photonic crystal membranes.
This cavity features a series of photonic bound states in the continuum that, in principle, trap light forever.
This platform allows for a quantum cooperativity exceeding unity in the ultrastrong single-photon coupling regime.
arXiv Detail & Related papers (2020-07-15T17:57:31Z) - Tunable quantum photonics platform based on fiber-cavity enhanced single
photon emission from two-dimensional hBN [52.915502553459724]
In this work we present a hybrid system consisting of defect centers in few-layer hBN grown by chemical vapor deposition and a fiber-based Fabry-Perot cavity.
We achieve very large cavity-assisted signal enhancement up to 50-fold and equally strong linewidth narrowing owing to cavity funneling.
Our work marks an important milestone for the deployment of 2D materials coupled to fiber-based cavities in practical quantum technologies.
arXiv Detail & Related papers (2020-06-23T14:20:46Z) - Hyperentanglement in structured quantum light [50.591267188664666]
Entanglement in high-dimensional quantum systems, where one or more degrees of freedom of light are involved, offers increased information capacities and enables new quantum protocols.
Here, we demonstrate a functional source of high-dimensional, noise-resilient hyperentangled states encoded in time-frequency and vector-vortex structured modes.
We generate highly entangled photon pairs at telecom wavelength that we characterise via two-photon interference and quantum state tomography, achieving near-unity visibilities and fidelities.
arXiv Detail & Related papers (2020-06-02T18:00:04Z) - Optical imprinting of superlattices in two-dimensional materials [0.0]
We use an optical method of shining circularly polarized and periodic laser fields to imprint structures in two-dimensional electronic systems.
By changing the configuration of the optical field, we synthesize various lattice structures with different spatial symmetry, periodicity, and strength.
arXiv Detail & Related papers (2019-12-30T19:00:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.