論文の概要: Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization
- arxiv url: http://arxiv.org/abs/2302.05865v1
- Date: Sun, 12 Feb 2023 06:38:30 GMT
- ステータス: 処理完了
- システム内更新日: 2023-02-14 18:06:06.235268
- Title: Flag Aggregator: Scalable Distributed Training under Failures and
Augmented Losses using Convex Optimization
- Title(参考訳): flag aggregator: convex最適化による障害と損失拡大時のスケーラブルな分散トレーニング
- Authors: Hamidreza Almasi, Harsh Mishra, Balajee Vamanan, Sathya N. Ravi
- Abstract要約: MLアプリケーションはますます、複雑なディープラーニングモデルと大規模なデータセットに依存している。
計算とデータをスケールするために、これらのモデルは、ノードのクラスタで分散的に必然的に訓練される。
分散セットアップは、個々のノード、コンポーネント、ソフトウェアのビザンチン障害を引き起こす。
我々は,現在の最先端アグリゲータを拡張し,最適化に基づく部分空間推定器を提案する。
- 参考スコア(独自算出の注目度): 15.35405542120812
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Modern ML applications increasingly rely on complex deep learning models and
large datasets. There has been an exponential growth in the amount of
computation needed to train the largest models. Therefore, to scale computation
and data, these models are inevitably trained in a distributed manner in
clusters of nodes, and their updates are aggregated before being applied to the
model. However, a distributed setup is prone to byzantine failures of
individual nodes, components, and software. With data augmentation added to
these settings, there is a critical need for robust and efficient aggregation
systems. We extend the current state-of-the-art aggregators and propose an
optimization-based subspace estimator by modeling pairwise distances as
quadratic functions by utilizing the recently introduced Flag Median problem.
The estimator in our loss function favors the pairs that preserve the norm of
the difference vector. We theoretically show that our approach enhances the
robustness of state-of-the-art byzantine resilient aggregators. Also, we
evaluate our method with different tasks in a distributed setup with a
parameter server architecture and show its communication efficiency while
maintaining similar accuracy. The code is publicly available at
https://github.com/hamidralmasi/FlagAggregator
- Abstract(参考訳): 現代のMLアプリケーションは、ますます複雑なディープラーニングモデルと大規模なデータセットに依存している。
最大のモデルを訓練するために必要な計算量が指数関数的に増加した。
したがって、計算とデータをスケールするために、これらのモデルはノードのクラスタ内で分散的に訓練され、それらの更新はモデルに適用される前に集約される。
しかし、分散セットアップは個々のノード、コンポーネント、ソフトウェアのビザンチン障害を起こしやすい。
これらの設定にデータ拡張を加えることで、堅牢で効率的なアグリゲーションシステムが必要である。
本稿では,現在進行中のアグリゲータを拡張し,最近導入されたフラグ中央値問題を利用して,ペアワイズ距離を二次関数としてモデル化し,最適化に基づく部分空間推定器を提案する。
損失関数の推定子は差分ベクトルのノルムを保存する対を好む。
理論的には、我々のアプローチは最先端のビザンチンレジリエントアグリゲータの堅牢性を高める。
また,パラメータサーバアーキテクチャを用いた分散環境におけるタスクの異なる手法の評価を行い,同様の精度を維持しながら通信効率を示す。
コードはhttps://github.com/hamidralmasi/FlagAggregatorで公開されている。
関連論文リスト
- High-Dimensional Distributed Sparse Classification with Scalable Communication-Efficient Global Updates [50.406127962933915]
我々はコミュニケーション効率のよい分散ロジスティック回帰モデルを学ぶことができる問題に対する解決策を開発する。
実験では、いくつかの分散更新ステップだけで、分散アルゴリズムよりも精度が大幅に向上することを示した。
論文 参考訳(メタデータ) (2024-07-08T19:34:39Z) - Distributed Collapsed Gibbs Sampler for Dirichlet Process Mixture Models
in Federated Learning [0.22499166814992444]
本稿では,DPMM (DisCGS) のための分散マルコフ連鎖モンテカルロ (MCMC) 推論手法を提案する。
我々のアプローチでは、崩壊したGibbsサンプルラーを使用し、独立マシンと異種マシンの分散データを扱うように設計されています。
例えば、100Kのデータポイントのデータセットでは、中央集権的なアルゴリズムは100回のイテレーションを完了するのに約12時間かかります。
論文 参考訳(メタデータ) (2023-12-18T13:16:18Z) - Improved Distribution Matching for Dataset Condensation [91.55972945798531]
本稿では,分布マッチングに基づく新しいデータセット凝縮法を提案する。
提案手法は,計算資源の少ない従来の最適化指向手法よりも優れている。
論文 参考訳(メタデータ) (2023-07-19T04:07:33Z) - Scaling Structured Inference with Randomization [64.18063627155128]
本稿では、構造化されたモデルを数万の潜在状態に拡張するためにランダム化された動的プログラミング(RDP)のファミリを提案する。
我々の手法は古典的DPベースの推論に広く適用できる。
また、自動微分とも互換性があり、ニューラルネットワークとシームレスに統合できる。
論文 参考訳(メタデータ) (2021-12-07T11:26:41Z) - Probabilistic partition of unity networks: clustering based deep
approximation [0.0]
ユニタリネットワーク(POU-Nets)の分割は、回帰とPDEの解に対する代数収束率を実現することができる。
ガウス雑音モデルを用いてPOU-Netを拡張し、最大可算損失の勾配に基づく一般化を導出できる確率的一般化を得る。
本研究では,高次元・低次元での性能を定量化するためのベンチマークを行い,高次元空間内のデータの潜在次元にのみ依存することを示す。
論文 参考訳(メタデータ) (2021-07-07T08:02:00Z) - T-LoHo: A Bayesian Regularization Model for Structured Sparsity and
Smoothness on Graphs [0.0]
グラフ構造化データでは、構造化されたスパーシリティと滑らかさが団結する傾向にある。
グラフィカルな関係を持つ高次元パラメータに先立って提案する。
構造された空間と滑らかさを同時に検出するために使用します。
論文 参考訳(メタデータ) (2021-07-06T10:10:03Z) - Solving weakly supervised regression problem using low-rank manifold
regularization [77.34726150561087]
我々は弱い教師付き回帰問題を解く。
weakly"の下では、いくつかのトレーニングポイントではラベルが知られ、未知のものもあれば、無作為なノイズの存在やリソースの欠如などの理由によって不確かであることが分かっています。
数値的な節ではモンテカルロモデルを用いて提案手法を人工と実のデータセットに適用した。
論文 参考訳(メタデータ) (2021-04-13T23:21:01Z) - Coded Stochastic ADMM for Decentralized Consensus Optimization with Edge
Computing [113.52575069030192]
セキュリティ要件の高いアプリケーションを含むビッグデータは、モバイルデバイスやドローン、車両など、複数の異種デバイスに収集され、格納されることが多い。
通信コストとセキュリティ要件の制限のため、核融合センターにデータを集約するのではなく、分散的に情報を抽出することが最重要となる。
分散エッジノードを介してデータを局所的に処理するマルチエージェントシステムにおいて,モデルパラメータを学習する問題を考える。
分散学習モデルを開発するために,乗算器アルゴリズムの最小バッチ交互方向法(ADMM)のクラスについて検討した。
論文 参考訳(メタデータ) (2020-10-02T10:41:59Z) - Generalizing Variational Autoencoders with Hierarchical Empirical Bayes [6.273154057349038]
確率的生成モデルのための計算的に安定なフレームワークである階層的経験的ベイズオートエンコーダ(HEBAE)を提案する。
鍵となる貢献は2つであり、まず、符号化分布を階層的に優先することで、再構成損失関数の最小化と過正規化の回避とのトレードオフを適応的にバランスさせることで、利益を得る。
論文 参考訳(メタデータ) (2020-07-20T18:18:39Z) - Real-Time Regression with Dividing Local Gaussian Processes [62.01822866877782]
局所ガウス過程は、ガウス過程の回帰に基づく新しい、計算効率の良いモデリング手法である。
入力空間の反復的データ駆動分割により、実際にはトレーニングポイントの総数において、サブ線形計算複雑性が達成される。
実世界のデータセットに対する数値的な評価は、予測と更新の速度だけでなく、精度の点で他の最先端手法よりも有利であることを示している。
論文 参考訳(メタデータ) (2020-06-16T18:43:31Z) - Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
Predictive Uncertainties [12.068153197381575]
高速収束を達成しつつ、潜在過程間の共分散を維持できる新しい変分族を提案する。
新しいアプローチの効率的な実装を提供し、それをいくつかのベンチマークデータセットに適用します。
優れた結果をもたらし、最先端の代替品よりも精度とキャリブレーションされた不確実性推定とのバランスが良くなる。
論文 参考訳(メタデータ) (2020-05-22T11:10:59Z)
関連論文リストは本サイト内にある論文のタイトル・アブストラクトから自動的に作成しています。
指定された論文の情報です。
本サイトの運営者は本サイト(すべての情報・翻訳含む)の品質を保証せず、本サイト(すべての情報・翻訳含む)を使用して発生したあらゆる結果について一切の責任を負いません。